Measurements of the Branching Fractions and CP asymmetries in $B \rightarrow K\pi$ decays with BABAR

Xuanzhong Li

University of Massachusetts Amherst On behalf of BABAR Collaboration

Physics Motivations

- The B \rightarrow K π decays are an important source of information to:
 - improve our knowledge of the fundamental parameters (weak phases and CPV effects)
 - test the Standard Model
 - constrain the parameter space of New Physics models
 - precise measurements provide useful information to improve the theoretical model calculations, such as QCD factorization and perturbative QCD, etc.

Quark mixing matrix in the Standard Model

- In the Standard Model, the Cabibbo-Kobayashi-Maskawa (CKM) Matrix describes the electroweak coupling strength of quarks to the W boson;
- 3x3 unitary matrix with 4 independent parameters;
- The irreducible phase parameter (η) is the source of possible CP violation.

the CKM Matrix

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

the Wolfenstein Parameterization of CKM Matrix $\begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$

The Decay Amplitudes

A. Buras & J. Silvestrini arXiv: hep-ph/9812392

$$\begin{aligned} & A(B^+ \to K^0 \pi^+) = -V_{ts} \, V_{tb}^* \, X \, P_1() + V_{us} \, V_{ub}^* \, X \, \{A_1() - P_1^{GIM}()\} \\ & \sqrt{2} \bullet A(B^+ \to K^+ \pi^0) = V_{ts} \, V_{tb}^* \, X \, P_1() - V_{us} \, V_{ub}^* \, X \, \{E_1() + E_2() - P_1^{GIM}() + A_1()\} \\ & A(B^0 \to K^+ \pi) = V_{ts} \, V_{tb}^* \, X \, P_1() - V_{us} \, V_{ub}^* \, X \, \{E_1() - P_1^{GIM}()\} \\ & \sqrt{2} \bullet A(B^0 \to K^0 \pi^0) = -V_{ts} \, V_{tb}^* \, X \, P_1() - V_{us} \, V_{ub}^* \, X \, \{E_2() + P_1^{GIM}()\} \end{aligned}$$

Ratios of BFs of central interest:

Within the SM, $R_c\text{-}R_n\approx 0$

Buras, Fleischer, etc. arXiv: hep-ph/0411373

$$R = \frac{BF(B^0 \to K^{\pm}\pi^{\mp})}{BF(B^{\pm} \to K^0\pi^{\pm})} \frac{\tau_{B^+}}{\tau_{B_d^0}^0}$$
$$R_c = 2\frac{BF(B^{\pm} \to K^{\pm}\pi^0)}{BF(B^{\pm} \to K^0\pi^{\pm})}$$
$$R_n = \frac{1}{2}\frac{BF(B^0 \to K^{\pm}\pi^{\mp})}{BF(B^0 \to K^0\pi^0)}$$

Three Types of CPV in B Decays

1. CP violation in decay, also called "the direct CP violation", happens when the amplitude for a decay and its CP conjugate process have different magnitudes:

$$\left|\overline{A}_{\overline{f}} / A_{f}\right| = \left|\sum_{i} A_{i} e^{i(\delta_{i} - \phi_{i})} / \sum_{i} A_{i} e^{i(\delta_{i} + \phi_{i})}\right| \neq 1 \Longrightarrow CP \text{ violation.}$$

* It can only happen when at least 2 amplitudes have different weak and strong phases.

The direct CP asymmetry:
$$A_{CP} = \frac{\left|A(\overline{B} \to \overline{f})\right|^2 - \left|A(B \to f)\right|^2}{\left|A(\overline{B} \to \overline{f})\right|^2 + \left|A(B \to f)\right|^2} = \frac{N(\overline{B} \to \overline{f}) - N(B \to f)}{N(\overline{B} \to \overline{f}) + N(B \to f)}$$

Where the B/\overline{B} are either the charged B^+/B^- or the (self) tagged B^0/\overline{B}^0 .

- 2. CP violation in mixing, which occurs when two neural mass eigenstates cannot be chosen to be CP eigenstates;
- 3. CP violation in the interference between decays with mixing, which usually occurs in combination with the other two types but not always the case.

The BABAR Detector **Ring-Imaging Cherenkov Electromagnetic Calorimeter** 6580 CsI(TI) crystals Detector (DIRC) **Drift Chamber** Y(4S) filled with 80% He, 20% i- C_4H_{10} e 9.0 GeV Silicon Vertex Tracker 5 layers of double Instrumented Flux Return (IFR) sided silicon strips **Resistive-Plate Chambers (RPC)** & Limited Streamer Tube (LST)

Particle ID: Charged π/K Separation

- BaBar's Detector of Internally Reflected Cherenkov light (DIRC) provides excellent performance in the pion/kaon separation
- the separation is from 2σ up to more than 10σ depending on the momentum

Analysis Overview

- Small BF ~ 10⁻⁵
- Large background from the $e^+e^- \rightarrow q\overline{q}$, q=u,d,s,c
- Two nearly uncorrelated kinematic variables are used for the background suppression:
 - Beam-energy substituted mass: $m_{ES} = \sqrt{(s/2 + p_i \cdot p_B)^2 / E_i^2 p_B^2}$

- $\Delta E = E_B^{CM} - \sqrt{s}/2$, the pion mass is assumed.

- the event shape variable Fisher discriminant (*F*) is used to enhance the separation of the signal from background.
- Particle ID: the Cherenkov angle information is used for the charged pion/kaon separation. The PDFs for $\theta_{\rm C}$ are from the D* control sample: D*+ \rightarrow D⁰ $\pi^+ \rightarrow$ (K⁻ π^+) π^+
- Unbinned Maximum Likelihood fit used to extract the yields and CP asymmetries.
- Cross check: the pure/mixed toy MC

Analysis Overview cont'd.

BF of $B^{\pm} \rightarrow K^0 \pi^{\pm}$

- Dataset contains 347 million $B\overline{B}$ pairs
- $K_{\rm S}$ reconstructed from $K_{\rm S} \rightarrow \pi^+ \pi^-$
- Simultaneous ML fit for $K_{s}\pi$ and $K_{s}K$
- M_{FS} , ΔE , Fisher, and θ_{C}

N_{signal}

 1072 ± 46

• Efficiency: 13.002 ± 0.030 % ($B^{\pm} \rightarrow K_{S} \pi^{\pm}$)

BF (10⁻⁶)

 $B^+ \rightarrow K^0 \pi^+$

Mode

BF of $B^{\pm} \rightarrow K^{\pm} \pi^0$

- Dataset contains 347 million $B\bar{B}$ pairs
- merged π^0 reconstructed from $\pi^0 \rightarrow \gamma \gamma$ or $\pi^0 \rightarrow \gamma(e^+e^-)$
- Simultaneous ML fit for $\pi\pi^0$ and $K\pi^0$
- $\text{M}_{\text{ES}},$ $\Delta\text{E},$ Fisher, and θ_{C}
- Efficiency: 26.8 ±1.3 % (B $^{\pm}\rightarrow$ K $^{\pm}\pi^{0}$)

old world average BF: 12.1 \pm 0.8 (10 ⁻⁶) -			
Mode	N _{signal}	BF (10 ⁻⁶)	
$B^+ \rightarrow K^+ \pi^0$	1239±52	$13.3\pm0.6\pm0.6$	

BF of $B^0 \rightarrow K^+ \pi^-$

- Improved statistics (227 million $B\overline{B}$ pairs) motivates to take into account radiative corrections
- the non-radiative BF (BF⁰): $\Gamma_{K\pi}(E_{\gamma}^{\max}) = \Gamma(B^0 \rightarrow K^+ \pi^- n\gamma)|_{\sum_{E_{\gamma} < E_{\gamma}^{\max}}} = \Gamma^0_{K\pi}(\mu) \cdot G_{K\pi}(E_{\gamma}^{\max};\mu)$
- E_{γ}^{max} is the maximum value allowed for the sum of the undetected photon energies and μ is the renormalization scale at which $\Gamma_{K\pi}^{0}$ and $G_{K\pi}(E_{\gamma}^{max})$ are calculated
- The correction factor $G_{K\pi}()$ is from the paper by Baracchini and Isidori

BF of $B^0 \rightarrow K^0 \pi^0$

Direct CP Asymmetries in $B{\rightarrow} K\pi$

Mode	A _{CP}
$B^{\pm} \rightarrow K^{0} \pi^{\pm}$	-0.029 ±0.039±0.010
$B^{\pm} \rightarrow K^{\pm} \pi^0$	0.016 ±0.041±0.010
$B^0 \rightarrow K^{\pm} \pi^{\mp}$	-0.108 ±0.024±0.007
$B^0 \rightarrow K^0 \pi^0$	-0.20 ±0.16 ±0.03

the Direct CPV in B \rightarrow K π @ 4.3 σ

For the time-dependent CP Violations: in $B \rightarrow \pi \pi$, M. Allen's talk

in $B \rightarrow KK$, J. Biesiada's talk

arXiv: hep-ex/0608036, 0607106, 0607096

The K-π Puzzle

- Revisit of two ratios of interest: R_c and R_n
 - Using our new BFs, we have: $R_c = 1.11 \pm 0.07$, $R_n = 0.94 \pm 0.07$
 - The pattern that $R_c > R_n$ would imply the enhancement of the EW penguin and/or the color suppressed tree contributions.

Buras, Fleischer, etc. arXiv: hep-ph/0402112

- About A_{CP}
 - $A_{CP}(B^+ \rightarrow K^+ \pi^0)$ is expected to be almost the same as $A_{CP}(B^0 \rightarrow K^+ \pi^-)$. In particular, they would have the same sign.
 - − Our new result shows $A_{CP}(B^+ \rightarrow K^+ \pi^0)=0.016\pm 0.041$ differs from $A_{CP}(B^0 \rightarrow K^+ \pi^-)=-0.108\pm 0.024$ by 2.6σ
 - Hints of New Physics? Gronau and Rosner say this violation may be accounted for by a large color suppressed tree amplitude.

Gronau and Rosner arXiv: hep-ph/0608040

Summary

- The $B \rightarrow K\pi$ decays play an important role in testing models and searching for the New Physics;
- BFs in $B \rightarrow K\pi$ decays updated, including the final state radiation;
- The direct CP asymmetries also updated:
 - Evidence of the direct CP violation in $B^0 \rightarrow K^+\pi^-$ decays.
 - Direct CP asymmetries in $B^{\pm} \rightarrow K^{0}\pi^{\pm}$, $B^{\pm} \rightarrow K^{\pm}\pi^{0}$ and $B^{0} \rightarrow K^{0}\pi^{0}$ decays are consistent with 0.
- The K-π puzzle in BFs can be explained by the enhanced EW penguin contributions, and the puzzle in A_{CP} may be explained by large color suppressed tree amplitude.

Mode	BF (10 ⁻⁶)	A _{CP}
$B^{\pm} \rightarrow K^{0} \pi^{\pm}$	23.9 ±1.1 ±1.0	-0.029 ±0.039±0.010
$B^{\pm} \rightarrow K^{\pm} \pi^0$	13.3 ±0.5 ±0.6	0.016 ±0.041±0.010
$B^0 \rightarrow K^{\pm} \pi^{\mp}$	19.7 ±0.6 ±0.6*	-0.108 ±0.024±0.007
$B^0 \rightarrow K^0 \pi^0$	10.5 ±0.7 ±0.5	-0.20 ±0.16 ±0.03