CKM Angle α in $B \rightarrow \rho \pi$ and $B \rightarrow \rho \rho$ at BaBar

Yury Kolomensky UC Berkeley/LBNL

DPF2006/JPS2006, Honolulu, HI October 31, 2006

Outline

- Overview
 - Theoretical challenges
 - Experimental techniques
- New results from BaBar
 □ CP asymmetries and Branching Ratios in B→ρρ
 □ CP asymmetries in B→ρπ
- Summary and Conclusions

Measuring α in B→hh Decays

At *tree level*, time-dependent asymmetry $A_{CP}(t)$ in $b \rightarrow u\overline{u}d$ transition to a *CP* eigenstate measures

$$\arg\left[\frac{-V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}}\right] = \pi - \beta - \gamma \equiv \alpha \quad (\text{in SM})$$

Possible interference with *Penguin* amplitudes:

$$A_{CP}(t) \Rightarrow \sin(2\alpha_{eff}); \alpha_{eff} = \alpha - \Delta \alpha; \text{ direct } A_{CP} \neq 0$$

⇒ 6 unknowns, 7 observables in B→ $\rho\rho$ (or 5, until CP asymmetries in $\rho^0\rho^0$ are measured)

- 4-fold ambiguity in $2\Delta\alpha$: either triangle can flip up or down
- In principle, 3 sets of triangles in $B \rightarrow \rho \rho$ (one for each polarization)

See also Mark Allen's talk this afternoon

Common Themes in All Measurements

- Small Branching Fractions: O(10⁻⁶–10⁻⁵)
 - Multivariate analyses to maximize sensitivity
 [©] Often deal with <1/100 S/B ratios
 - Typical variables
 - $^{\odot}$ m_{ES}, ΔE , event topology (neural nets or Fisher): discriminate against continuum backgrounds
 - ^{CP} ΔE, resonance masses and helicity angles: discriminate against dominant B backgrounds
 - ^{CP} B vertex and tagging: for CP analyses and further background suppression
 - Main backgrounds: continuum, charm B decays, charmless crossfeeds
 - Systematic understanding of backgrounds and signal distributions crucial
 - [©] Correlations often important !
- Vector-vector modes: angular analysis

- Simplest case: uncorrelated variables, PDF = product of projections
 - \rightarrow Often not so simple: have to understand correlations (systematics)
- Compare parameters against data (systematics)
- ML fits are not always unbiased: test with plenty of MC

Angular Analysis in $B \rightarrow \rho \rho$

 $B \rightarrow \rho \rho$ is a vector-vector state; angular analysis is required to determine *CP* content: \Rightarrow Helicity angle distributions

Longitudinal:
$$A_0 = -\frac{1}{\sqrt{3}}S + \sqrt{\frac{2}{3}}D$$
 pure $CP = +1$
Transverse: $A_{+1} = \frac{1}{\sqrt{3}}S + \frac{1}{\sqrt{6}}D + \frac{1}{\sqrt{2}}P$ transverse
is not a CP
eigenstate regenstate transverse θ_1 and θ_2 transverse θ_1 and θ_2 transverse θ_1 and θ_2 transverse θ_1 transverse θ_2 transverse θ_2 transverse θ_2 transverse θ_1 transverse θ_2 transverse θ_2 transverse θ_2 transverse θ_1 transverse θ_2 tr

Fortunately, the fraction f_L of the helicity-zero state in $B \to \rho \rho$ decays is very close to 1: \Rightarrow V-A/pQCD prediction: $f_L \approx 1 - O((m_V/m_B)^2)$

$$f_L(B^0 \to \rho^+ \rho^-)_{WA} = 0.967^{+0.023}_{-0.028}$$
$$f_L(B^{\pm} \to \rho^{\pm} \rho^0)_{WA} = 0.96 \pm 0.06$$

BaBar/Belle Average, April 2006

Don't miss Andrei Gritsan's talk tomorrow morning !

Branching Fraction Measurements: $B^0 \rightarrow a_1 \pi$

\Rightarrow Potential for measuring α

R. Aleksan et al., NP **B361**, 141 (1991); M. Gronau and J. Zupan, PRD **73**, 057502 (2006).

Branching Fraction Measurements: $B^0 \rightarrow a_2$

 $\Rightarrow \text{One of important backgrounds in } B^0 \rightarrow \rho^+ \rho^- \\ \rightarrow \text{Reconstruct exclusively in } a_1^{\pm} \rightarrow \pi^+ \pi^- \pi^{\pm}$

Updated This Summer: $B^0 \rightarrow \rho^+ \rho^-$

distributions for the highest-purity tagged events

The new measurement in $B^{\pm} \rightarrow \rho^{\pm} \rho^{0}$ allows the $\rho \rho$ isospin triangle to close

New This Summer: $B^0 \rightarrow \rho^0 \rho^0$

- 8-dimensional fit
 - \square m_{ES}, ΔE , event topology, m($\pi\pi$)_{1,2}, cos $\theta_{1,2}$ (helicity angles), flavor tags
- Float 8 major components in ML fit
 - $\Rightarrow B^0 \rightarrow \rho^0 \rho^0$: simultaneous fit for yield and polarization
 - \Rightarrow Signal-like modes $B^0 \rightarrow \rho^0 f_0(980)$ and $B^0 \rightarrow f_0(980) f_0(980)$
 - $\square B^0 \rightarrow a_1 \pi \text{ (dominant peaking background)}$
 - □ Peaking backgrounds from open charm decays ⁽³⁾ E.g. $B^0 \rightarrow D\pi (D \rightarrow K\pi\pi)$
 - Charmless decays

 $\textup{Set } E.g. \ B \rightarrow K^{*0} \rho^0 \ , \ \rho^{\pm} \rho^0$

- Combinatorial background (dominated by continuum)
 - Determine shape from data, float parameter values
- ⇒ Results statistically consistent with the previous BaBar analyses

hep-ex/0607097

 $N_{\rho^0 \rho^0} = 98^{+32}_{-31} \pm 22 \text{ (3.0}\sigma \text{ significance)}$ Br $(B^0 \to \rho^0 \rho^0) = (1.16^{+0.37}_{-0.36} \pm 0.27) \times 10^{-6}$ $f_L(B^0 \to \rho^0 \rho^0) = 0.86^{+0.11}_{-0.13} \pm 0.05$

Also measure: $Br (B^0 \to \rho^0 f_0) \times Br (f_0 \to \pi^+ \pi^-) < 0.68 \times 10^{-6} \text{ (at 90\% C.L.)}$ $Br (B^0 \to f_0 f_0) \times Br^2 (f_0 \to \pi^+ \pi^-) < 0.33 \times 10^{-6} \text{ (at 90\% C.L.)}$

Largest systematic errors: interference with $B^0 \rightarrow a_1(1260)\pi$ and PDF parameter uncertainties

New $B \rightarrow \rho \rho$ Results: Summary

hep-ex/0607097, hep-ex/0607098

Due to increased $Br(B^0 \rightarrow \rho^0 \rho^0)$, weaker constraint on α from $B \rightarrow \rho \rho$

This is a *frequentist* interpretation: use only the $B \rightarrow \rho\rho$ branching fractions, polarization fractions and isospin-triangle relations in arriving at these constraints on $\Delta \alpha = \alpha - \alpha_{eff}$ and α

With more statistics, determination of both *C* and *S* in $B^0 \rightarrow \rho^0 \rho^0$ will be possible, leading to an improvement in the precision of the the $\rho\rho$ isospin analysis

$B^0 \rightarrow (\rho \pi)^0$: Dalitz-plot analysis

Monte Carlo

26

25

30

 $\rho\pi$ is not a CP eigenstate

⇒ Time-dependent Dalitz-plot analysis assuming isospin symmetry: measure 26 coefficients of the bilinear form factors

A. Snyder and H. Quinn, Phys. Rev. D, 48, 2139 (1993)

$$A(B^{0} \to \pi^{+}\pi^{-}\pi^{0}) = f_{+}A(\rho^{+}\pi^{-}) + f_{-}A(\rho^{-}\pi^{+}) + f_{0}A(\rho^{0}\pi^{0})$$
$$\widetilde{A}(\overline{B}^{0} \to \pi^{+}\pi^{-}\pi^{0}) = f_{+}\widetilde{A}(\rho^{+}\pi^{-}) + f_{-}\widetilde{A}(\rho^{-}\pi^{+}) + f_{0}\widetilde{A}(\rho^{0}\pi^{0})$$

Interference in the corners of the Dalitz plot provides information on *strong phases* between resonances

The $\rho(1450)$ and $\rho(1700)$ resonances are also included

5

 B^0

 \overline{B}

(GeV⁻/c⁻)

s⁺

30

25

20

15

10

5

0

0

□ Interference

Ps. = 1.5 GeV/c

10

S,

15

 $(\text{GeV}^2/\text{c}^4)$

20

One of the Ingredients: $B^+ \rightarrow \rho^+ \pi^0$

Based on 232 million $B\overline{B}$ pairs; hep-ex/0506069

 \Rightarrow Constrain isospin relationships in $B^0 \rightarrow \rho \pi$ system

 $Br(B^{\pm} \to \rho^{\pm} \pi^{0}) = (10.0 \pm 1.4 \pm 0.9) \times 10^{-6}$ $A_{CP} = -0.01 \pm 0.13 \pm 0.02$

New $B^0 \rightarrow (\rho \pi)^0$ Results (cont.)

BABAR

A more physical interpretation of direct-CP quantities:

 $A_{\rho\pi}^{-+}$

hep-ex/0608002

Quasi-two-body description of $B \rightarrow \rho \pi$:

 $\Delta S_{\rho\pi} = 0.06 \pm 0.13 \pm 0.029$ $\Delta C_{\rho\pi} = 0.377 \pm 0.091 \pm 0.021$

Yu. Kolomensky, α in $B \rightarrow \rho \pi$ and $B \rightarrow \rho \rho$ at BaBar

DPF/JPS 2006

Physical Interpretation

The relative phase between the amplitudes of $B^0 \rightarrow \rho^- \pi^+$ and $B^0 \rightarrow \rho^+ \pi^-$

1 1 BABAR [75, 152]° PRELIMINARY at 68.3% C.L. 0.75 0.75 [5, 63]°

$\delta_{+-} = \arg(A^{+*}A^{-}) = (34 \pm 29)^{\circ}$

Relatively weak constraint on α from $B^0 \rightarrow (\rho \pi)^0$, but free from ambiguities!

no constraint at 2σ level

Constraint on α

hep-ex/0608002

Combined Constraints on $\alpha\,$ from BaBar

Constraints on α from $B \rightarrow \pi\pi$, $\rho\pi$, $\rho\rho$ (Frequentist and Bayesian analyses):

131 (2005), [hep-ph/0406184], updated results and plots available at http://ckmfitter.in2p3.fr M. Ciuchini, G. D'Agostini, E. Franco, V. Lubicz, G. Martinelli, F. Parodi, P. Roudeau, A. Stocchi, JHEP **0107** (2001) 013 [hepph/0012308], updated results and plots available at http://utfit.roma1.infn.it

Yu. Kolomensky, α in $B \rightarrow \rho \pi$ and $B \rightarrow \rho \rho$ at BaBar

Summary

- New results from BaBar this year
 - First evidence for $B^0 \to \rho^0 \rho^0$
 - New measurements of branching ratios and CP asymmetries in $B^{\pm} \rightarrow \rho^{\pm} \rho^{0}$ and $B^{0} \rightarrow \rho^{+} \rho^{-}$
 - Dalitz analysis of $B^0 \to \pi^+ \pi^- \pi^0$ decays
- More clarity to come with more data
 - Currently, constraints on α depend on details of theoretical and statistical treatment; these discrepancies should be clarified with more precise measurements
 - CP analysis in $B^0 \to \rho^0 \rho^0$ is becoming possible: could reduce the uncertainty on α to ~10 degrees by the end of current B-factory era