(Physics Potential of) a Very Long Baseline Neutrino Experiment using a Wide Band Beam

Mark Dierckxsens Brookhaven National Laboratory

DPF2006, Oct 29 – Nov 03, 2006

Outline

- Motivation for and concept of a very long baseline (VLBL) neutrino oscillation experiment
- Possibility of neutrino beams in the US
- Possibility of deep underground water Cherenkov detector in the US
- Recent improvements in e/π⁰ separation in a water Cherenkov detector
- Physics potential: see talk D. Marfatia

Very Long Baseline Experiment

- Introduction
- Concept
- \checkmark v_µ disappearance
- ✓ v_e appearance

Three neutrino oscillations

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix} \implies \begin{array}{l} \textbf{PMNS matrix:} \\ \textbf{3 mixing angles} \\ \textbf{1 CP phase} \\ (\textbf{2 CP Majorana phases) \\ \textbf{2 CP Majorana phases) \\$$

Mark Dierckxsens

Physics Potential of VLBL experiment

normal

e

inverted

τ

μ

Very long baseline (VLBL) concept:

- Long distances between production and detection
- Wide band v_{u} beam
- Higher neutrino energies (> 0.5 GeV)

A single VLBL experiment will have:

- \sim increased sensitivity to $\sin^2 2\theta_{13}$
- \sim good sensitivity to δ_{CP}
- \sim potential for resolving mass hierarchy (sign of Δm_{32}^2)
- capability for precision measurements of $\Delta m_{_{32}}^2 \& \sin^2 2\theta_{_{23}}$

 v_{μ} disappearance

BROOKHAVEN NATIONAL LABORATORY

 2 nodes out of fermi motion domain

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 2\theta_{23} \cdot \sin^2(\frac{1.27 L \Delta m_{32}^2}{E})$$

precision measurement Δm^2_{32} and $\sin^2 2\theta_{23}$

Mark Dierckxsens

 v_{e} appearance

Approx. formula including matter effects (M. Freund) :

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\approx \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\frac{\sin^{2}((\hat{A}-1)\Delta)}{(\hat{A}-1)^{2}} & \text{``atmospheric''} \\ &+ \alpha J_{CP}\frac{\sin(\Delta)\sin(\hat{A}\Delta)\sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} & \text{``CP effects''} \\ &+ \alpha I_{CP}\frac{\cos(\Delta)\sin(\hat{A}\Delta)\sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} & \text{``CP effects''} \\ &+ \alpha^{2}\cos^{2}\theta_{23}\sin^{2}2\theta_{12}\frac{\sin^{2}(\hat{A}\Delta)}{\hat{A}^{2}} & \text{``solar''} \end{split}$$

$$\begin{split} &\alpha = \Delta \, m_{21}^2 / \Delta \, m_{31}^2 \approx 0.03 \,, \, \Delta = \Delta \, m_{31}^2 \, L/4 \, E \\ &\hat{A} = 2 \mathrm{VE} / \Delta \, m_{31}^2 \approx (E_{\nu} / \, GeV) / 11 \, \, (\mathrm{Earth's\ crust}) \,, \, \, V = \sqrt{2} \, G_F \, n_e \\ &J_{CP} = \sin \delta_{CP} \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23} \,, \\ &I_{CP} = \cos \delta_{CP} \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23} \,, \end{split}$$

Numerical calculations used for actual results

Mark Dierckxsens

v_e appearance

✓ P(v_µ → v_e) depends on all oscillation parameters and has following degeneracies: *x* intrinsic (θ₁₃, δ_{CP}) ↔ (θ'₁₃, δ'_{CP}) *x* sign $\Delta m^2_{32} ↔ -\Delta m^2_{32}$ *x* octant θ₂₃ ↔ $\pi/2 - \theta_{23}$

- ✓ atmospheric term has effect of sin²θ₁₃ and matter effects (~L)
- ✓ CP violating term ~L/E, flux ~L⁻² → sensitivity to δ_{CP} independent of distance (Marciano hep-ph/0108181)
- \checkmark solar term dominated by $\Delta m^2_{~_{21}}$ and grows as \sim (L/E)^2

Mark Dierckxsens

BROOKHAI

v_e appearance

Fully exploit shape of appearance spectrum: helps in resolving ambiguities with one experiment at one baseline

Mark Dierckxsens

Baselines in US

The U.S. DUSEL sites enjoy a natural geographical advantage not present in other potential world sites

Sensitivity studies will cover 500-3000km baselines!

Homestake

Henderson

/~1500 km

1~1300 km

Mark Dierckxsens

Physics Potential of VLBL experiment

BNL

Wide band neutrino beams

- Making conventional v_{μ} beams
- Beam from BNL
- Beam from FNAL
- Flux calculations

NuMI example:

- shoot protons on target
- magnetic horns: focus pions to get more flux and select v or anti-v
- decay pipe for pions to decay
- material to absorb remaining hadrons and muons

Mark Dierckxsens

Beam from BNL

BROOKHAVEN

AGS upgrade: 28 GeV 1MW neutrino beam ~ Increase intensity and repetition rate ~ Needs new power supply, RF and replacing booster with 1.2 GeV SC linac

neutrino beamline on a hill:

- keep radiation above water table
- ✓ 45m high
- target on top
- 200 m decay pipe
- ✓ pointing ~11° down

Total cost estimate: \$273M (excl. contingency)

"The AGS-Based Super Neutrino Beam Facility Conceptual Design Report", Weng, Diwan, Raparia et al., BNL-73210-2004-IR

Mark Dierckxsens

Possible proton beam power upgrades:

a) Proton plan:

- More protons in MI
- After Tevatron: batches
 pbar production available
- b) Super NuMI: after Tevatron
 - Phase I: use Recycler as pre-injector
 - Phase II: also use Accumulator
- c) High Intensity Neutrino Source (a.k.a. Proton driver):
 - Replace booster with 8GeV sc linac

FERMILAB'S ACCELERATOR CHAIN

Phase II of sNuMI is part of the plan for the NOVA-I

"Fermilab Proton Projections for Long-Baseline Neutrino Beams" Bob Zwaska, FNAL-BEAM-DOCS-2393

Mark Dierckxsens

Flexibility of proton energy:

Beam from FNAL

Beamline: use existing NuMI extraction

- target hall: 45m
 decay pipe: 400m
 near detector: 300m from end decay pipe
- Angles to: × Homestake: 5.8° × Henderson: 6.7°

Flux Calculations

BROOKHAVEN NATIONAL LABORATORY

Simulation using NuMI Monte Carlo (gnumi):

- based on GEANT3 and Fluka05
- validated by MINOSNear Detector data

Modifications:

- Target
- Horns
- Decay pipe: r=2m, l=380m

\rightarrow Wide Band Low Energy (WBLE) beam

"Simulation of a Wide-band Low-Energy Neutrino Beam for Very Long Baseline Neutrino Oscillation Experiments", M. Bishai et al. BNL-76997-2006-IR

Flux Calculations

 Good agreement BNL & WBLE calculations (28GeV)
 Increase flux: longer decay pipe & higher proton energy

Mark Dierckxsens

Water Cherenkov Detector

- Requirements
- UNO at Henderson
- Modular detector at Homestake
- ✓ $e/π^0$ separation

- well established technique
- scale few times Super-K 50kT (22.5kT fiducial)
- v several 100kTs (depends on physics)
- 20%-40% PMT coverage (depends on physics)
- \sim 10% energy resolution on quasi-elastic v_e interactions
- rejection neutral current interactions x10-20
- underground to reduce cosmics (no veto counter needed if deep enough)

Detector at Henderson

UNO detector:

- 1 large cavern
- 3 optically separated modules of 60x60x60 m³
- total mass 440 kT fiducial
- central module 40% PMT coverage (low E physics)
- v outer modules 10% PMT coverage
- optional finer
 granularity: 20 or
 13 inch tubes
- optimal depth5400mwe (2500 feet)
- construction time: 10 years
- coarse cost estimate
 scaling Super-K: \$500M

Detector at Henderson

IONAL LABORATORY

Water Cherenkov Simulation

Full GEANT simulation of Super-KamiokaNDE used

- 40% PMT coverage
- atmospheric neutrino MC reweighted to match expected flux 28GeV AGS beam
 - "Pattern of Light" fit improves standard Super-K π^0 finder
- Improvements at lower opening angles with finer granularity expected

"Background Rejection Study in a water Cherenkov detector", C. Yanagisawa, C. K. Jung, P.T. Le, B. Viren, July 18, 2006

Mark Dierckxsens

Water Cherenkov Simulation

BROOKHAVEN

Select single ring events and electrons

Analysis of single ring pattern

 \checkmark likelihood cut keeping 50% signal: S/B: 700/2004 \rightarrow 350/169

confirmed using T2K MC

"T2KK Project and Likelihood study", Fanny Dufour, U.S. Long Baseline Neutrino Experiment Study Workshop, September 16-17, 2006

Mark Dierckxsens

ν_{e} appearance spectrum

Mark Dierckxsens

Physics Potential of VLBL experiment

IONAL LABORATC

$sin^{2}2\theta_{13}$ sensitivity

Mark Dierckxsens

Conclusions

- Reviewed concept and motivation for a very long baseline experiment using a wide band beam.
- MW scale proton machine possible at FNAL & BNL.
 Wide band beam simulated using experimentally validated numi MC.
- Large, deep underground water Cherenkov detectors are considered at Homestake and Henderson mines.
 Detailed cost estimate for a modular detector at Homestake.
- ✓ Recent work on e/π^0 separation shows required level of background reduction is feasible.
- Next talk: details sensitivity to oscillation parameters
- ✓ Sending a wide band v_{μ} beam towards a large underground water Cherenkov detector seems feasible with known technologies!

Mark Dierckxsens

Backup Slides

Mark Dierckxsens

Physics Potential of VLBL experiment

28

Proton Math (120 GeV):

•	Current complax	Protons	Cycle Time	Power
•				
	No Improvements			
	- Snared Beam	25 x 10 ¹²	2.4 s	200 kW
	– NuMI Alone	30 x 10 ¹²	2 s	280 kW
•	Proton Plan			
	 Increase Beam Intensity 			
	 Shared Beam 	37 x 10 ¹²	2.2 s	320 kW
	- NuMI Alone	49 x 10 ¹²	2.2 s	430 kW
•	SNuMI – Recycler			
	Reduce Cycle Time	49 x 10 ¹²	1.33 s	700 kW
•	SNuMI – Accumulator			
	 Increase Beam Intensity 	83 x 10 ¹²	1.33 s	1200 kW
•	HINS	150 y 10 12	1 22 c	2200 1/14
	 Increase Beam Intensity 	100 X 1012	T.22 2	ZZUU KVV

Mark Dierckxsens

MI ramp rates

Mark Dierckxsens

ABS vs WBLE flux

BROOKHAVEN NATIONAL LABORATORY

WBLE vs AGS beam spectra

Good agreement between original AGS beam and WBLE predictions

Mark Dierckxsens

WBLE changes to gnumi

TABLE I: Target and beam parameters: NuMI and WBLE

Component	NuMI	WBLE				
Shape:	47 rectangular segments	solid cylindrical rod				
	each 6.4mm wide \times 18mm high	12mm diameter				
	and 20mm long					
	= 0.954 m total length	0.8 m total length				
Material:	$\operatorname{graphite}$	carbon-carbon composite				
Density:	$1.784 \ { m g/cm^3}$	$2.1~{ m g/cm^3}$				
Cooling:	water cooling tubes	Helium flow cooled				
Proton beam parameters						
Energy:	$120 { m GeV}$	$28,40,60,120~{\rm GeV}$				
RMS width:	$\sigma_x = 1.1 \text{mm}, \sigma_y = 1.25 \text{mm}$	$\sigma_x = 1.5$ mm, $\sigma_y = 1.5$ mm				

Mark Dierckxsens

Modular detector: cost and time

Construction costs for 3 caverns:

Table 3: Comparison of single chamber versus three chamber cost

Estimated Costs (\$MM)			
	# Of Chambers	1	3
Labor & Benefits		\$5.51	\$10.94
Mining and Construction			
Equipment Operation		\$1.30	\$3.89
Supplies		\$4.51	\$13.35
Precast Concrete Liner		\$3.25	\$9.75
Other (Outside Contractors)		\$0.17	\$0.52
30% Contingency		\$4.40	\$11.48
	TOTAL(2002)	\$19.1	\$49.93
	TOTAL(2007)	\$29.1	\$66.1

Costs of 3 detector modules:

Cost Description	Amount	Comment
Development	\$3M	Extrapolated from SNO
Procurement/Module	\$5M	Water purification, distributution, calibration
Production/Module	\$62.1M	For 25% PMT coverage of 11,000 ${ m m}^2$
Total (3 Modules)	\$242.7M	Includes 25% contingency

Mark Dierckxsens

Comparison with Chiaki's efficiency

"T2KK Project and Likelihood study", Fanny Dufour,

U.S. Long Baseline Neutrino Experiment Study Workshop, September 16-17, 2006

Mark Dierckxsens