

Leptonic EDM's from Heavy Right-Handed Neutrinos

DPF2006, Hawaii, October 31, 2006

Tatsu Takeuchi

with

Raifuddin Rayyan

Virginia Tech

Interactions between spin and the electromagnetic field:

 $\vec{\sigma} \cdot \vec{B}$ $\vec{\sigma} \cdot \vec{E}$

Interactions between spin and the electromagnetic field:

$$\mu \, \vec{\sigma} \cdot \vec{B} \qquad \qquad d \, \vec{\sigma} \cdot \vec{E}$$

 μ : magnetic dipole moment d: electric dipole moment

Interactions between spin and the electromagnetic field:

$$\mu \, \vec{\sigma} \cdot \vec{B} \qquad \qquad d \, \vec{\sigma} \cdot \vec{E}$$

 μ : magnetic dipole moment d : electric dipole moment Under CP:

$$\vec{\sigma} \xrightarrow{P} \vec{\sigma} \xrightarrow{C} -\vec{\sigma}$$
$$\vec{B} \xrightarrow{P} \vec{B} \xrightarrow{C} -\vec{B}$$
$$\vec{E} \xrightarrow{P} -\vec{E} \xrightarrow{C} +\vec{E}$$

Interactions between spin and the electromagnetic field:

$$\mu \, \vec{\sigma} \cdot \vec{B} \qquad \qquad d \, \vec{\sigma} \cdot \vec{E}$$

 μ : magnetic dipole moment d : electric dipole moment Under CP:

$$\vec{\sigma} \quad \stackrel{P}{\longrightarrow} \quad \vec{\sigma} \quad \stackrel{C}{\longrightarrow} \quad -\vec{\sigma} \\ \vec{B} \quad \stackrel{P}{\longrightarrow} \quad \vec{B} \quad \stackrel{C}{\longrightarrow} \quad -\vec{B} \\ \vec{E} \quad \stackrel{P}{\longrightarrow} \quad -\vec{E} \quad \stackrel{C}{\longrightarrow} \quad +\vec{E}$$

Non-zero *d* violates P and CP.

6 CP violation in the quark sector

6 CP violation in the lepton sector

- 6 CP violation in the quark sector
 - Already constrained to be small

6 CP violation in the lepton sector

- 6 CP violation in the quark sector
 - Already constrained to be small
 - Cannot be a source of baryogenesis

6 CP violation in the lepton sector

- 6 CP violation in the quark sector
 - Already constrained to be small
 - Cannot be a source of baryogenesis
 - Quark EDM's generated at the 3-loop level
- 6 CP violation in the lepton sector

- 6 CP violation in the quark sector
 - Already constrained to be small
 - Cannot be a source of baryogenesis
 - Quark EDM's generated at the 3-loop level
- 6 CP violation in the lepton sector
 - Unconstrained. Could be big.

- 6 CP violation in the quark sector
 - Already constrained to be small
 - Cannot be a source of baryogenesis
 - Quark EDM's generated at the 3-loop level
- 6 CP violation in the lepton sector
 - Unconstrained. Could be big.
 - Could be a source of leptogenesis

- 6 CP violation in the quark sector
 - Already constrained to be small
 - Cannot be a source of baryogenesis
 - Quark EDM's generated at the 3-loop level
- 6 CP violation in the lepton sector
 - Unconstrained. Could be big.
 - Could be a source of leptogenesis
 - Lepton EDM's generated at the 2-loop level

 $\propto |U_{\alpha i}|^2$

 $\propto |U_{\alpha i}|^2$

 $\propto |U_{\alpha i}|^2$

Insensitive to complex phases

 $\propto (U_{\alpha i}^* U_{\beta i}) (U_{\alpha j} U_{\beta j}^*)$

 $\propto (U_{\alpha i}^* U_{\beta i}) (U_{\alpha j} U_{\beta j}^*)$

Diagram is symmetric under the interchange $i \leftrightarrow j$

Tatsu Takeuchi, DPF 2006, October 31, 2006 - p.5/1

$\propto (U_{\alpha i}^* U_{\beta i}) (U_{\alpha j} U_{\beta j}^*)$

Diagram is symmetric under the interchange $i \leftrightarrow j$ \implies Imaginary parts of $(U_{\alpha i}^* U_{\beta i})(U_{\alpha j}U_{\beta j}^*)$ cancel Shabalin, Sov. J. Nucl. Phys. 28 (1978) 75

2-loop diagram unique to leptons

2-loop diagram unique to leptons

Diagram is anti-symmetric under the interchange $i \leftrightarrow j$

2-loop diagram unique to leptons

 $\propto (U_{\alpha i}^* U_{\beta i}^*) (U_{\alpha j} U_{\beta j})$

Diagram is anti-symmetric under the interchange $i \leftrightarrow j$ \implies Imaginary parts of $(U_{\alpha i}^* U_{\beta i}^*)(U_{\alpha j} U_{\beta j})$ survive

6 The Majorana masses of the light left-handed neutrinos are too small.

- 6 The Majorana masses of the light left-handed neutrinos are too small.
- 6 The Majorana masses of the heavy right-handed neutrinos can be large.

- 6 The Majorana masses of the light left-handed neutrinos are too small.
- 6 The Majorana masses of the heavy right-handed neutrinos can be large.
- 6 The mixings between the light and heavy states are small.

- 6 The Majorana masses of the light left-handed neutrinos are too small.
- 6 The Majorana masses of the heavy right-handed neutrinos can be large.
- ⁶ The mixings between the light and heavy states are small. In the seesaw model : $U \sim D/M$.

- 6 The Majorana masses of the light left-handed neutrinos are too small.
- 6 The Majorana masses of the heavy right-handed neutrinos can be large.
- 6 The mixings between the light and heavy states are small. In the seesaw model : $U \sim D/M$. $M^2 U^4 \sim D^4/M^2 \sim (D^2/M)^2 \sim m_{\nu}^2$

- 6 The Majorana masses of the light left-handed neutrinos are too small.
- 6 The Majorana masses of the heavy right-handed neutrinos can be large.
- The mixings between the light and heavy states are small. In the seesaw model : U ~ D/M.
 M²U⁴ ~ D⁴/M² ~ (D²/M)² ~ m²_ν
 → same order as the light neutrino contribution.

Example: Okamura Texture PRD 68, 073001 (2003)

0	0	0	αD	βD	γD
0	0	0	αD	βD	γD
0	0	0	αD	βD	γD
αD	αD	αD	αM	0	0
βD	βD	βD	0	βM	0
γD	γD	γD	0	0	γM

 $\alpha + \beta + \gamma = 0$

Example: Okamura Texture PRD 68, 073001 (2003)

$$\begin{bmatrix} 0 & 0 & 0 & \alpha D & \beta D & \gamma D \\ 0 & 0 & 0 & \alpha D & \beta D & \gamma D \\ 0 & 0 & 0 & \alpha D & \beta D & \gamma D \\ \alpha D & \alpha D & \alpha D & \alpha M & 0 & 0 \\ \beta D & \beta D & \beta D & 0 & \beta M & 0 \\ \gamma D & \gamma D & \gamma D & 0 & 0 & \gamma M \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

6 Rank = 3

Example: Okamura Texture PRD 68, 073001 (2003)

$$\begin{bmatrix} 0 & 0 & 0 & \alpha D & \beta D & \gamma D \\ 0 & 0 & 0 & \alpha D & \beta D & \gamma D \\ 0 & 0 & 0 & \alpha D & \beta D & \gamma D \\ \alpha D & \alpha D & \alpha D & \alpha M & 0 & 0 \\ \beta D & \beta D & \beta D & 0 & \beta M & 0 \\ \gamma D & \gamma D & \gamma D & 0 & 0 & \gamma M \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

6 Rank = 3 \rightarrow light masses automatically zero.

Example: Okamura Texture PRD 68, 073001 (2003)

$$\begin{bmatrix} 0 & 0 & 0 & \alpha D & \beta D & \gamma D \\ 0 & 0 & 0 & \alpha D & \beta D & \gamma D \\ 0 & 0 & 0 & \alpha D & \beta D & \gamma D \\ \alpha D & \alpha D & \alpha D & \alpha M & 0 & 0 \\ \beta D & \beta D & \beta D & 0 & \beta M & 0 \\ \gamma D & \gamma D & \gamma D & 0 & 0 & \gamma M \end{bmatrix}$$

 $\alpha + \beta + \gamma = 0$

- $6 \quad \text{Rank} = 3$
 - \rightarrow light masses automatically zero.
 - \rightarrow mixings and masses are independent.

Example: Okamura Texture PRD 68, 073001 (2003)

$$\begin{bmatrix} 0 & 0 & 0 & \alpha D & \beta D & \gamma D \\ 0 & 0 & 0 & \alpha D & \beta D & \gamma D \\ 0 & 0 & 0 & \alpha D & \beta D & \gamma D \\ \alpha D & \alpha D & \alpha D & \alpha M & 0 & 0 \\ \beta D & \beta D & \beta D & 0 & \beta M & 0 \\ \gamma D & \gamma D & \gamma D & 0 & 0 & \gamma M \end{bmatrix}$$

 $\alpha + \beta + \gamma = 0$

- 6 Rank = 3
 - \rightarrow light masses automatically zero.
 - \rightarrow mixings and masses are independent.
 - \rightarrow lepton EDM's can be large!?

20 Diagrams

Tatsu Takeuchi, DPF 2006, October 31, 2006 - p.9/1

20 Diagrams

Give to graduate student!

6 Assume:

neutrino Dirac mass \gg charged lepton mass

6 Assume:

neutrino Dirac mass \gg charged lepton mass

6 10 of the 20 diagrams can be neglected.

6 Assume:

neutrino Dirac mass \gg charged lepton mass

- 6 10 of the 20 diagrams can be neglected.
- 6 Leading order contribution in the changed lepton mass can be calculated exactly.

6 Assume:

neutrino Dirac mass \gg charged lepton mass

- 6 10 of the 20 diagrams can be neglected.
- 6 Leading order contribution in the changed lepton mass can be calculated exactly.
- 6 Final result:

d = expression which fills a few pages

6 Assume:

neutrino Dirac mass \gg charged lepton mass

- 6 10 of the 20 diagrams can be neglected.
- 6 Leading order contribution in the changed lepton mass can be calculated exactly.
- 6 Final result:

d = expression which fills a few pages

Paper in preparation.

Numerical Results

Current Experimental Limits:

$$d_e = (6.9 \pm 7.4) \times 10^{-28} \,\mathrm{e} \cdot \mathrm{cm}$$

 $d_\mu = (3.7 \pm 3.4) \times 10^{-19} \,\mathrm{e} \cdot \mathrm{cm}$

Numerical Results

Current Experimental Limits:

$$d_e = (6.9 \pm 7.4) \times 10^{-28} \,\mathrm{e} \cdot \mathrm{cm}$$

 $d_\mu = (3.7 \pm 3.4) \times 10^{-19} \,\mathrm{e} \cdot \mathrm{cm}$

Preliminary Result for Okamura Model:

$$d_e \le O(10^{-28}) \,\mathrm{e} \cdot \mathrm{cm}$$

(Actual number depends on choice of parameters.)