Bottomonium Decays at CLEO

Jianchun Wang Syracuse University

DPF 2006+JPS 2006, 10/31/06

The Detector and Upsilon Data Sets

CLEO III Upsilon Topics

- Anti-deuteron production in Υ(nS) decays and the nearby continuum.
- ♦ Inclusive production $\Upsilon(1S) \rightarrow \eta' X$.
- ♦ Upsilon radiative decays:
 - > Observation of exclusive modes: $\gamma \pi \pi$, γKK .
 - > Search for $\Upsilon(1S) \rightarrow \gamma \pi^0 \pi^0$, $\gamma \eta \eta$, $\gamma \pi^0 \eta$.
 - > Search for $\Upsilon(1S) \rightarrow \gamma \eta$, $\gamma \eta'$.
 - > UL on multi-body modes (\geq 4 charged tracks).
 - Comparison of inclusive hadron production in gluon-rich and quark environment.

Anti-Deuteron in Upsilon Decays

- Anti-deuteron production has been observed in many different kinds of hadronization processes.
- ARGUS observed anti-deuteron in Υ(1S) decays.
 OPAL set an upper limit in Z decays.
- The production can be explained by coalescence model and a model based on string calculation. The basic idea is that an anti-proton and an antineutron are produced nearby in phase space to form an anti-deuteron.
- CLEO has a factor ~40 more Y(1S) than ARGUS to make a more precise measurement.
- The main PID tool is dE/dX with RICH info also used.
- CLEO measured production in momentum range (0.45 – 1.45) GeV/c and use a model dependent extrapolation for unmeasured region.

10/31/06

Anti-Deuteron Production

♦ The production BR per direct $\Upsilon(1S) \rightarrow ggg, gg\gamma$ decays is

 $B^{dir}(\Upsilon(1S) \to \overline{dX}) = (3.36 \pm 0.23 \pm 0.25) \times 10^{-5}$

The overall BR per $\Upsilon(1S)$ is

 $B(\Upsilon(1S) \to \overline{dX}) = (2.86 \pm 0.19 \pm 0.21) \times 10^{-5}$

The production in Υ(2S) is

 $B(\Upsilon(2S) \to \overline{dX}) = (3.37 \pm 0.50 \pm 0.25) \times 10^{-5}$

Removing contribution of $\Upsilon(2S) \rightarrow \Upsilon(1S)X$, and $\Upsilon(2S) \rightarrow ggg, gg\gamma, q\overline{q}$, CLEO set 90% CL limit

 $B(\mathbf{gc}_{b1,2,0} \to \overline{dX}) < 1.09 \times 10^{-4}$

The production rate upper limit in $\Upsilon(4S)$ is

 $B(\Upsilon(4S) \to \overline{dX}) < 1.31 \times 10^{-5}$

Solution Continuum production cross section at \sqrt{s} =10.5 GeV

 $B(e^+e^- \to dX) < 0.031 \ pb$

Jianchun Wang

Deuteron production is enhanced in ggg, ggγ process.

Inclusive $\Upsilon(1S) \rightarrow \eta' X$

♦ The unexpectedly large $B(B \rightarrow \eta' X_s)$ with $P_{\eta'} > 2$ GeV was observed by CLEO and confirmed by BaBar.

CLEO: $(6.2 \pm 1.6 \pm 1.3^{+0.0}_{-1.5}) \times 10^{-4}$ BaBar: $(3.9 \pm 0.8 \pm 0.5 \pm 0.8) \times 10^{-4}$

♦ Within SM, a possible explanation is the large $g^* \rightarrow g\eta'$ coupling in b → sg penguin diagram (*Atwood & Soni*).

- Such enhancement should present in $\Upsilon(1S)$ decays (*Kagan, Atwood & Soni*).
- ♦ CLEO II measured B(Y(1S)→ggg→η'X)=(1.9±1.1±0.2)x10⁻⁴ for E_{η'}/E_{beam}>0.7, ruled out a class of form factors characterized by a weak q² dependence. Higher precision is needed for more model tests.

10/31/06

Inclusive η' Production In $\Upsilon(1S)$ Data

Inclusive η^\prime Production Compare with Theory

- Measured spectrum is not well described by existing models.
- ♦ The observed B(B→η'X_S) is unlikely to be explained by an enhanced g*gη' form factor. An explanation outside the realm of SM or an improved understanding of non-perturbative QCD effects may be needed.

Upsilon Radiative Decays

 In Upsilon two-body radiative decays, The two gluons hadronize into a meson or form a glueball.

- These decays are theoretically simple (no hadronic FSI). They are useful in study of color-singlet two-gluon system.
- Many J/ψ → γX (X=η, η', η_c, f₂(1270), ...) decay modes have been observed. A possible glueball state f_J(2220) was reported by BES. Other candidates like X(1860) were also observed.
- ♦ Radiative decays Υ(1S) → γX are analogous to that of J/ψ. The decay branching fraction is scaled down by 1/25, due to the quark charges, masses and the total width of the quarkonia.
- ♦ CLEO II observed $\Upsilon(1S) \rightarrow \gamma f_2(1270)$, consistent with scaling down factor. CLEO also set an upper limit on $f_J(2220)$ production.

 $\Upsilon(1S) \rightarrow \gamma h^+h^-$

CLEO III

No significant structure at 2220 or 1860.

10/31/06

Jianchun Wang

10

$\Upsilon(1S) \rightarrow \gamma h^+h^-$

♦ Observe $f_2'(1525)$ in K⁺K⁻ mode and establish J=2 assignment. $B(\Upsilon(1S) \rightarrow g_{f_2}'(1525)) = (3.7^{+0.9}_{-0.7} \pm 0.8) \times 10^{-5}$

♦ Set 90% CL upper limit on product branching fraction for f_J(2220): $B(\Upsilon(1S) \rightarrow g f_J(2220)) \times B(f_J(2220) \rightarrow p^+p^-) < 8 \times 10^{-7},$ $B(\Upsilon(1S) \rightarrow g f_J(2220)) \times B(f_J(2220) \rightarrow K^+K^-) < 6 \times 10^{-7},$ $B(\Upsilon(1S) \rightarrow g f_J(2220)) \times B(f_J(2220) \rightarrow p\bar{p}) < 11 \times 10^{-7}.$

Set 90% CL upper limit on product branching fraction for X(1860):

 $B(\Upsilon(1S) \to \boldsymbol{g}X(1860)) \times B(X(1860) \to p\overline{p}) < 5 \times 10^{-7}.$

Published: PRD73, 032001(2006)

$\Upsilon(1S) \rightarrow \gamma h^0 h^0$

• Measured $f_2(1270)$ production rate in $\pi^0\pi^0$ mode, consistent with $\pi^+\pi^-$ mode.

 $B(\Upsilon(1S) \rightarrow \boldsymbol{g} f_2(1270)) = (10.5 \pm 1.6^{+1.9}_{-1.8}) \times 10^{-5}$

♦ No resonance structure for $f_0(1500)$ and $f_0(1710)$ and 90% upper limits are set. The limits are order of magnitude lower than QCD factorization calculation (*PRD66, 074015*): $B(\Upsilon(1S) \rightarrow g f_0(1500)) < 1.17 \times 10^{-5}$,

 $B(\Upsilon(1S) \rightarrow \boldsymbol{g} f_0(1710)) \times B(f_0(1710) \rightarrow \boldsymbol{p}^0 \boldsymbol{p}^0) < 1.2 \times 10^{-6}.$

See two candidates in ηη mode and no candidate in π⁰η mode. UL are:

 $B(\Upsilon(1S) \to g f_0(1500)) \times B(f_0(1500) \to hh) < 3.0 \times 10^{-6},$ $B(\Upsilon(1S) \to g f_0(1710)) \times B(f_0(1710) \to hh) < 1.9 \times 10^{-6},$

Search for $\Upsilon(1S) \rightarrow \gamma \eta, \gamma \eta'(I)$

♦ Production rates of J/ψ → γη, γη', γ f₂(1270) have been measured and

 $B(J/\mathbf{y} \to g\mathbf{h}')/B(J/\mathbf{y} \to gf_2) \approx 3.4$ $B(J/\mathbf{y} \to g\mathbf{h})/B(J/\mathbf{y} \to gf_2) \approx 0.7$

♦ $B(\Upsilon(1S) \rightarrow \gamma f_2(1270)) = 10.0 \times 10^{-5}$ by CLEO II and III.

♦ CLEO II set B(Y(1S) → γ η') < 1.6 ×10⁻⁵ and (Y(1S) → γ η) < 2.1 ×10⁻⁵, corresponding to the ratio limits of 0.16 and 0.21 respectively.

Several models (VDM, NRQCD, mixing with η_b) try to explain the lower rates and need to be tested.

Decay modes: $\eta \rightarrow \gamma \gamma$, $\pi^+\pi^-\pi^0$, $\pi^0\pi^0\pi^0$ are searched. No candidate seen.

Search for $\Upsilon(1S) \rightarrow \gamma \eta$, $\gamma \eta'$ (II)

 $\mathcal{B}(\Upsilon(1S) \to \gamma \eta') < 1.77 \times 10^{-6}$

Strongly disfavors mixing with $\eta_{b.}$ Still consistent with VDM. Barely consistent with NRQCD.

Search for $\Upsilon \rightarrow \gamma \Re$, $\Re \rightarrow (\geq 4 h^{\pm})$

- Two body decay with a narrow resonance ℜ results in monochromatic γ in the lab frame.
- A bump above the smooth background indicates a narrow resonance.
- A series of fit at each E_γ step to Chebyshyev polynomial function for background and Gaussian function for signal.
- The production upper limit at each E_{\(\gamma\)} is calculated from fit and map to M_{\(\mathcal{R}\)}.

10/31/06

Search for $\Upsilon \rightarrow \gamma \Re$, $\Re \rightarrow (\geq 4 h^{\pm})$ CLEO III Preliminary hep-ex/0607054 $B(T \rightarrow \gamma \Re, \Re \rightarrow (\geq 4 h^{\pm}))$ Upper Limit 10⁻³ ¬ Y(1S) ---- Y(2S) --: Y(3S) $B(\Upsilon \rightarrow \gamma \Re, \Re \rightarrow (\geq 4 h^{\pm}))$ 90%CL Upper Limit All M_{\Re} 1.45<M_%<5 GeV 10-4 Υ(1S) 1.05×10^{-3} 1.82×10^{-4} Υ(2S) 1.65×10^{-3} 1.69×10^{-4} Υ(3S) 2.47×10^{-3} 3.00×10^{-4} 2.5 4.5 6.5 0.5 $M_{\Re}(GeV)$ B.R upper limits are all $\sim 10^{-4}$.

No conflict with existing measurements

Hadron Production in Gluon vs Quark

- Hadron productions in gluon rich and quark environment have been compared by many experiments.
- \diamond At LEP 3 jet (qqg) and 2 jet (qq) events were used for comparison.
- ♦ At CESR $\Upsilon(1S) \rightarrow ggg$ and e⁺e⁻ $\rightarrow q\overline{q}$ were used. CLEO found that ϕ , Λ and p production rates are higher in ggg decays.
- Samples $\Upsilon(1S) \rightarrow gg\gamma$ and $e^+e^- \rightarrow qq\gamma$ are better choices: Parton numbers are equal. Parton total energy can be equal.

Comparison Between $gg\gamma$ and $q\overline{q}\gamma$

Comparison Between ggg and $q\overline{q}$

Integrated Enhancement Comparison

15		$gg\gamma$ vs. $qq\gamma$	ggg vs. qq	1984 Study	
Data	Λ	1.86 ± 0.25 ± 0.03	2.668 ± 0.027 ± 0.051	~ 3 ± 0.3	
MC		1.381 ± 0.039	1.440 ± 0.003		C III preliminary
Data	р	1.21 ± 0.11 ± 0.03	1.623 ± 0.014 ± 0.088	~ 1.5 ± 0.3	
MC		1.582 ± 0.034	1.331 ± 0.005		
Data	P	1.45 ± 0.14 ± 0.21	1.634 ± 0.014 ± 0.081	C	Ecepter
MC		1.589 ± 0.034	1.333 ± 0.005		He.
Data	ф	0.48 ± 0.91 ± 0.05	1.423 ± 0.051 ± 0.065	~ 2 ± 0.6	
MC		0.702 ± 0.027	0.836 ± 0.003		
Data	f ₂	1.34 ± 0.84 ± 0.05	0.658 ± 0.029 ± 0.065		

- \diamond CLEO III measurement of ggg vs qq is consistent with CLEO II measurement.
- Enhancement effect is smaller in $gg\gamma vs q\overline{q}\gamma$.
- Enhancement is smaller for meson than baryon.

Summary

- \clubsuit CLEO measured inclusive anti-deuteron and η' in Υ decays.
- \diamond CLEO studied a group of radiative modes of Υ decays.
- ♦ They are rich laboratories to study hadronization process from gluon.