Quantum Correlations in D^oD^o Decays at CLEO-c

A. Lincoln Wayne State University DPF 2006 Oct. 31

These results use CLEO-c data on the ψ ", 281 pb⁻¹, which corresponds to 1 million D⁰D⁰ pairs.

What are we measuring?

- x, y: D⁰-D⁰ mixing amplitudes

- r: Kπ DCSD to CF amplitude

- CF: u π^+ W^+ d С S K⁻ D^0 U u DCSD: u W^+ K+ S d С D^0 π U Mixing box diagram: d,s,b U — D⁰ D^0 С U d,s,b
- $\delta_{\kappa\pi}$: K π DCSD to CF relative phase

How can we measure them?

These quantities can be measured in various ways:

- in $D^{*_+} \rightarrow D^0 \pi^+$ the charge of the slow pion determines D^0 or $\overline{D^0}$. Rates can be measured since we know the charm of the parent D.
- in $\psi(3770) \rightarrow D^0\overline{D^0}$, the pairs are C = -1, so indistinguishable final states interfere, and rates are more sensitive to mixing. These coherent pairs allow for a simultaneous fit to yields to determine x, y, $\cos\delta_{\kappa\pi}$, and DCSD rate. This is our method.

CLEO-c: TQCA

$$ee \rightarrow \gamma^* \rightarrow D^0 \overline{D^0}$$
 is $C = -1$

We use:

- Flavor tags: hadronic decay to non-CP eigenstate. CF or DCSD are possible. We use $D^0 \rightarrow K^-\pi^+$ (f) and $\overline{D^0} \rightarrow K^+\pi^-$ (f).
- CP tags: hadronic decay to state of definite CP. We use

$$\begin{array}{l} D^{0}/D^{0} \rightarrow K_{s} \ \pi^{0} \qquad (CP-) \\ D^{0}/\overline{D^{0}} \rightarrow K^{+}K^{-} \qquad (CP+) \\ D^{0}/\overline{D^{0}} \rightarrow \pi^{+} \ \pi^{-} \qquad (CP+) \\ D^{0}/\overline{D^{0}} \rightarrow K_{s} \ \pi^{0} \ \pi^{0} \ (CP+) \end{array}$$

Semileptonics: inclusive, decay of form $D^0 \rightarrow X e^- \overline{v}$ (I-). Charge of lepton always tells us charm of parent D.

CLEO-c: TQCA

- We measure yields for:
 - f / f opposite anything, CP+/- opposite anything. These are single tags.
 - All combinations of f / f opposite CP+/-, f / f opposite f / f , and CP+/- opposite CP+/-. These are hadronic double tags.
 - Semileptonic opposite f / f and semileptonic opposite CP+/-. These are semileptonic double tags.
- Fit inputs: 6 hadronic single tag yields, 14 hadronic double tag yields, 10 semileptonic double tag yields, efficiencies, crossfeeds, background branching fractions and efficiencies.
- Use fitter from CLEO-c *D* absolute hadronic branching fraction analysis [physics/0503050].
- **Fit outputs**: y, r², r(2cos $\delta_{K\pi}$), R_M, and branching fractions for f, each CP mode, and X e⁻ $\overline{\nu}$
- Limiting statistics: CP tags
- Procedure tested with *CP*-correlated Monte Carlo, where existing non-QC MC was reweighted to mimic quantum correlation.

Rate enhancement factors CP+CP-/+ **Forbidden unless** mixing $R_{M} = (x^2 + y^2)/2$ R_{M}/r^{2} r = Ampl(DCS)/Ampl(CF) \overline{f} $1+r^{2}(2-(2\cos\delta)^{2})$ Forbidden by CP /conservation CP+ $1+r (2cos\delta)$ ()Maximal Interference, sensitive to correlations **Isolated decay rates** both DCSD amplitude and strong phase 1-*r* (2cosδ) 2 $\mathbf{0}$ Single tags X $1 + ry (2cos\delta)$ <u>1-</u>*y* 1+y1

To 1st order. If no quantum correlation, all entries would be 1. See PRD 73 034024 (2006) [hep-ph/0507238] by Asner and Sun

Hadronic Single Tags

- Standard D reconstruction.
- Cut on ΔE , fit M_{BC} distribution to signal and background shapes. (M_{BC}: Beam Constrained Mass. M_{BC} = sqrt($E^2_{beam} - p^2_{D}$))
- Eff<u>ici</u>encies from (uncorrelated) DD Monte Carlo simulations.
- Peaking backgrounds for:
 Kπ from K/πp article ID swap.
 Modes with K⁰_s from non-resonant π⁺π⁻

Mode	ε (%)	% bkg	Signal Yield (10 ³)
<i>K</i> -π⁺	65.7 ± 0.1	0.13	26.0 ± 0.2
<i>K</i> ⁺π⁻	66.7 ± 0.1	0.14	26.3 ± 0.2
<i>K</i> -K⁺	58.9 ± 0.2	0.00	4.70 ± 0.08
$\pi^{-}\pi^{+}$	73.5 ± 0.3	0.00	2.13 ± 0.12
<i>Κ</i> ⁰ _S π ⁰ π ⁰	14.6 ± 0.1	13.8	3.58 ± 0.17
K ⁰ _S π ⁰	31.4 ± 0.1	2.2	8.06 ± 0.11

Single Tags in Data

Hadronic Double Tags

- Cut and count in M_{BC1} vs. M_{BC2} plane, define three sidebands.
- Uncorrelated background: one *D* misreconstructed (sometimes both).
 - Signal/sideband scale factor: integrate background function from ST fits.
- Mispartition background: particles mis-assigned between D° and $\overline{D^{\circ}}$.

Double Tags in Simulation

Double Tags in Data

Enhancement

No QC Data		K-K+		π-π+ CP+	$K_s \pi^0 \pi^0$	K	₃ π ⁰ CP-		
K-K+	0	5.2±0. -2.2±1	4 .9	4.5±0.3 0.1±0.9	5.7±0.4 1.6±1.3	1 3	6.0±0.6 9.6±6.3	Ţ	
π-π+	P +			1.1±0.2 0.2±1.4	2.2±0.2 1.6±1.3	1	5.8±0.4 4.0±3.7	,	
$K_s \pi^0 \pi^0$		Consis	stent w	vith zero	1.2±0.2 1.0±1.0	7 1	′.3±0.4 9.0±4.4		
K _s π ⁰	D_					9 3).7±0.5 3.0±1.7		

CP tags vs CP tags clearly shows Quantum Correlation

Inclusive Semileptonic Double Tags

- Tag one side with Kπ or CP+/-, search for electron in remainder of event.
- Fit electron spectrum for signal and background.
 - gamma conversion, π⁰ Dalitz decay: charge symmetric.
 - Mis-ID: hadrons faking electrons.
 - Mis-tag: estimate from tag-side $M_{\rm BC}$ - ΔE sideband.
- Require right-sign electron charge for $K\pi$ tag.
- Efficiency correction in bins of p_e .

Tag	E	ε _e (%)	% bkg	Signal Yield
$K^{-}\pi^{+}$	-	72.9	5.2	1206 ± 35
$K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$	4	71.9	2.8	1291 ± 36
<i>K</i> - <i>K</i> +		69.1	23.2	145 ± 12
<i>K</i> - <i>K</i> +	+	69.0	34.8	136 ± 12
$\pi^-\pi^+$		70.0	28.2	78 ± 9
$\pi^-\pi^+$	+	70.2	29.0	55 ± 7
$K^0{}_S\pi^0\pi^0$		69.2	43.8	146 ± 12
$K^{0}{}_{S}\pi^{0}\pi^{0}$	+	69.1	65.9	140 ± 12
$K^0{}_S\pi^0$		69.2	8.2	231 ± 15
$K^0{}_{S}\pi^0$	4	75.1	19.1	221 ± 15

Semileptonics

- Opposite flavor tags: very clean, low mis-tag background, almost no mis-ID as only right sign electrons are counted.

- Opposite CP tags: more mis-tags, and have mis-ID background.

Systematic Uncertainties

- Mixing/DCS parameters determined from ST/DT double ratios:
 - Correlated systematics cancel (tracking/ π^0/K_s^0 efficiencies).
 - Different systematics from branching fraction measurements.
- Uncorrelated systematic uncertainties included in the fit:
 - Yield fit variation.
 - Possible contribution from C=+1 initial state.
 Can limit with CP+/CP+, CP-/CP- double tags—forbidden for C=-1.
 Data provides self-calibration of initial state.
 - Signal yields have peaking backgrounds of opposite CP or flavor \rightarrow bias in estimates from uncorrelated MC.
 - Possible bias from *CP*-correlated MC test.

Full systematic error analysis in progress.

Currently, $\sigma_{syst} \sim \sigma_{stat}$.

_	
Parameter	CLEC
У	-0.057
۲ ²	(-2.8±
r(2cos $\delta_{\kappa\pi}$)	0.130
R _M	(1.74
$B(D{\rightarrow}K\pi)$	(3.80:
$B(D \rightarrow K^+K^-)$	(0.357
$B(D{ ightarrow}\pi^{+}\pi^{-})$	(0.12
$B(D \rightarrow K_s \pi^0 \pi^0)$	(0.932
$B(D \rightarrow K_s \pi^0)$	(1.27
B(D⁰→Xev)	(6.21
	Erro
	Parameter y r^2 $r(2cos\delta_{\kappa\pi})$ R_M $B(D\rightarrow K\pi)$ $B(D\rightarrow K^+K^-)$ $B(D\rightarrow \pi^+\pi^-)$ $B(D\rightarrow K_s\pi^0\pi^0)$ $B(D\rightarrow K_s\pi^0)$

D TQCA PDG or CLEOc 7±0.066±? 0.008 ± 0.005 £6.9±?)x10⁻² (3.74±0.18)x10⁻³ First measurement of ±0.082±? $cos\delta_{\kappa\pi}$ ±1.47±\?)x10⁻₃ < ~1x10⁻³ ±0.029±\?)% (3.91±0.12)% 7±0.029±१)% (0.389±0.012)% 5±0.011±?)% (0.138±0.005)% 2±0.087±?)% (0.89±0.41)% $\pm 0.09 \pm ?)\%$ (1.55±0.12)% ±0.42±?\% (6.46±0.21)%

Errors are statistical only

Summary and Future Plans

- Obviously still preliminary, but very promising
- Systematics look tractable (< stats)
- Number of CP tags is limit so working on adding more
- Determination of x needs C = +1 initial state from running above the ψ "
- Add CP modes ($K_{s}\eta$, $K_{s}\omega$, $K_{L}\pi^{0}$)
- Ultimate sensitivity with projected CLEO-c data set y ±0.012, x²±0.0006, $cos\delta_{\kappa\pi}$ ±0.13, x($sin\delta_{\kappa\pi}$) ±0.024

	Definition	Current knowledge (PDG)
У	$(\Gamma_2 - \Gamma_1)/2\Gamma =$ B(CP+)-B(CP-)	0.008 ± 0.005
X	$(M_2-M_1)/\Gamma$ sensitive to NP	x' < 0.018
R _M	(x ² +y ²)/2	< ~1 x 10 ⁻³
r	$K\pi$ DCS-to-CF rel. amplitude	0.061 ± 0.001
r δ	$K\pi$ DCS-to-CF rel. amplitude $K\pi$ DCS-to-CF relative phase	0.061 ± 0.001 π (weak) + ? (strong)
r δ z	$K\pi$ DCS-to-CF rel. amplitude $K\pi$ DCS-to-CF relative phase 2cos δ	0.061 ± 0.001 π (weak) + ? (strong) None

References:

Goldhaber, Rosner: **PRD 15, 1254 (1977).** Xing: **PRD 55, 196 (1997).** Gronau, Grossman, Rosner: **hep-ph/0103110**. Atwood, Petrov: **PRD 71, 054032 (2005)**. Asner, Sun: **hep-ph/0507238**.