Behavior of the S parameter in the crossover region between walking and QCD-like regimes of an SU(N) gauge theory

Masafumi Kurachi

C.N. Yang Institute for Theoretical Physics, SUNY at Stony Brook

Refs.

M. Kurachi and R. Shrock, hep-ph/0605290 M. Kurachi and R. Shrock, Phys. Rev. D74:056003 (2006)

Nov. 1, 2006, Joint Meeting of Pacific Region Particle Physics Communities

Outline

- 1. Introduction
- 2. Large $-N_f$ QCD
- 3. Methods
- 4. Numerical results
- 5. Summary

Introduction

Possible scenarios for EWSB

- With fundamental Higgs · · · · · SM, etc.
- Without fundamental Higgs
 - Perturbative · · · · · · · Higgsless models, etc.
 - Non-perturbative · · · · · Technicolor models, etc.

Introduction

Possible scenarios for EWSB

- With fundamental Higgs · · · · · SM, etc.
- Without fundamental Higgs
 - Perturbative · · · · · · · Higgsless models, etc.
 - Non-perturbative · · · · · Technicolor models, etc.

The last one is the least hypothetical

We know dynamical symmetry breaking actually occurs in the real world (i.e., chiral symmetry breaking in QCD)

The S parameter in Technicolor models

Perturbative calculations are not reliable

We can use the knowledge of QCD if we assume that technicolor is a just a scaled-up version of QCD

Phenomenological difficulties...

Possibly large contribution to the S parameter from the strong dynamics (EW precision measurements require $S \sim O(0.1)$)

We investigate the large flavor SU(N) gauge theory as an example of Non-QCD-like dynamics

What is the large flavor SU(N) gauge theory?

SU(N) gauge theory with an arbitrary number (N_f) of massless fermions

(Note : "large flavor" here does not mean $N_f o \infty$)

Here, we take N=3 for concreteness, so we call it the large $-N_f$ QCD

What is interesting about the large N_f QCD?

Existence of the IR fixed point makes the theory quite different from QCD

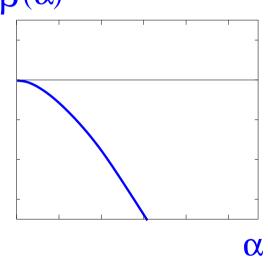
- Walking behavior of the running coupling (which is nice for solving the FCNC problem and providing large enough fermion masses)
- Chiral restoration

RGE
$$\mu \frac{d}{d\mu} \alpha(\mu) = \beta(\alpha) = -b \alpha^2(\mu) - c \alpha^3(\mu)$$

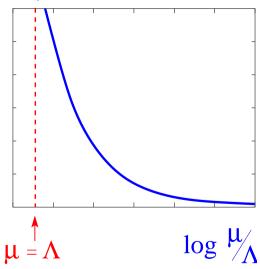
$(N_c=3)$	$N_f < 8$	$8 < N_f < 16.5$	$\boxed{16.5 < N_f}$
$b = \frac{1}{6\pi} \left(33 - 2N_f \right)$	+	+	
$c = \frac{1}{12\pi^2} (153 - 19N_f)$	+		

$$|\mathbf{RGE}| \mu \frac{d}{d\mu} \alpha(\mu) = \beta(\alpha) = -b \alpha^2(\mu) - c \alpha^3(\mu)$$

$(N_c = 3)$	$N_f < 8$	$8 < N_f < 16.5$	$\boxed{16.5 < N_f}$
$b = \frac{1}{6\pi} \left(33 - 2N_f \right)$	+	+	
$c = \frac{1}{12\pi^2} (153 - 19N_f)$	+		



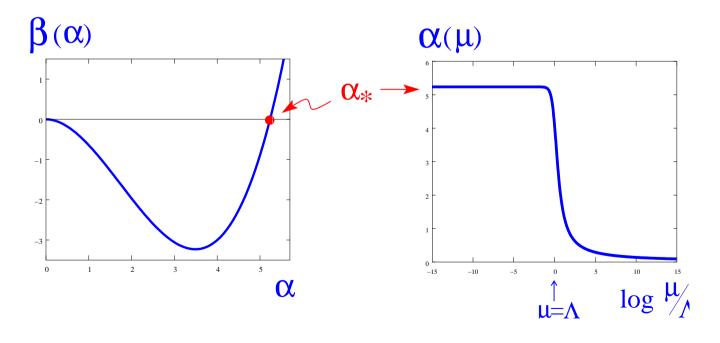
$\alpha(\mu)$



$$N_f < 8$$

RGE
$$\mu \frac{d}{d\mu} \alpha(\mu) = \beta(\alpha) = -b \alpha^2(\mu) - c \alpha^3(\mu)$$

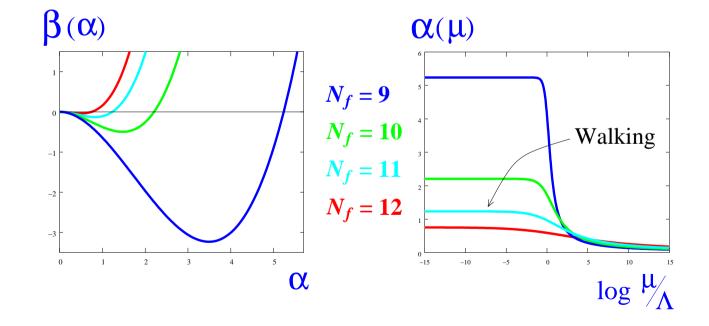
$(N_c=3)$	$N_f < 8$	$8 < N_f < 16.5$	$16.5 < N_f$
$b = \frac{1}{6\pi} \left(33 - 2N_f \right)$	+	+	
$c = \frac{1}{12\pi^2} (153 - 19N_f)$	+		



$$8 < N_f < 16.5 \quad (\alpha_* = -b/c)$$

RGE
$$\mu \frac{d}{d\mu} \alpha(\mu) = \beta(\alpha) = -b \alpha^2(\mu) - c \alpha^3(\mu)$$

$(N_c=3)$	$N_f < 8$	$8 < N_f < 16.5$	$\boxed{16.5 < N_f}$
$b = \frac{1}{6\pi} \left(33 - 2N_f \right)$	+	+	
$c = \frac{1}{12\pi^2} \left(153 - 19N_f \right)$	+	_	



Chiral restoration at $N_f = N_f^{\rm cr} \simeq 12 \; (\alpha_* = \alpha_{\rm cr} = \pi/4)$

What is interesting about the large N_f QCD?

Existence of the IR fixed point makes the theory quite different from QCD

- Walking behavior of the running coupling
- Chiral restoration

Contribution to the ${\cal S}$ parameter might be small compared to the QCD-like theory

How to calculate the S parameter

$$\hat{S} \equiv \frac{S}{(N_f/2)} = -4\pi \frac{d}{dq_E^2} \left[\Pi_{VV}(q_E^2) - \Pi_{AA}(q_E^2) \right] \Big|_{q_E^2 = 0}$$

• Current-current correlator Π_{JJ} :

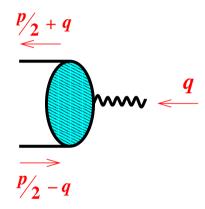
$$\delta^{ab} \left(\frac{q_{\mu}q_{\nu}}{q^2} - g_{\mu\nu} \right) \Pi_{JJ}(q^2) = i \int d^4x \ e^{iqx} \ \langle 0|TJ_{\mu}^a(x)J_{\nu}^b(0)|0\rangle$$

$$J^{a}_{\mu}(x) = \begin{cases} V^{a}_{\mu}(x) = \bar{\psi}(x) \frac{\lambda^{a}}{2} \gamma_{\mu} \psi(x), \\ A^{a}_{\mu}(x) = \bar{\psi}(x) \frac{\lambda^{a}}{2} \gamma_{\mu} \gamma_{5} \psi(x), \end{cases}$$

How to calculate the current correlators

We need

• the three point vertex function $\chi^{(J)}_{\alpha\beta}$:



$$\delta_i^j \left(\frac{\lambda^a}{2}\right)_f^{f'} \int \frac{d^4p}{(2\pi)^4} e^{-ipr} \chi_{\alpha\beta}^{(J)}(p;q,\epsilon)$$

$$= \epsilon^{\mu} \int d^4x e^{iqx} \langle 0|T \psi_{\alpha if}(r/2) \psi_{\beta}^{jf'}(-r/2) J_{\mu}^{a}(x) |0\rangle$$

• and the full fermion propagator :

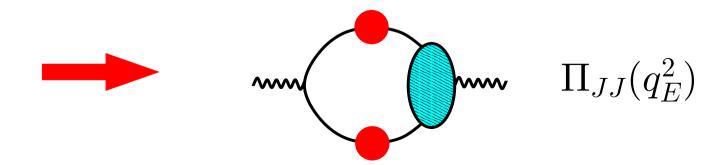
How to calculate the current correlators

We need

• the three point vertex function $\chi_{\alpha\beta}^{(J)}$:

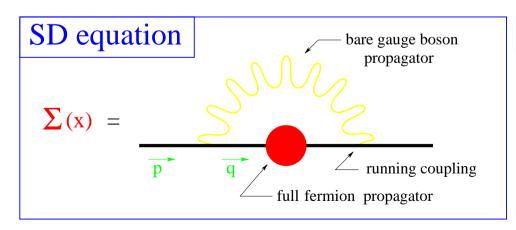


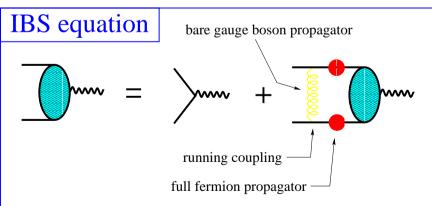
• and the full fermion propagator :



How to calculate the three-point vertex

We numerically solve the inhomogeneous BS equation and the SD equation simultaneously with the improved ladder approximation



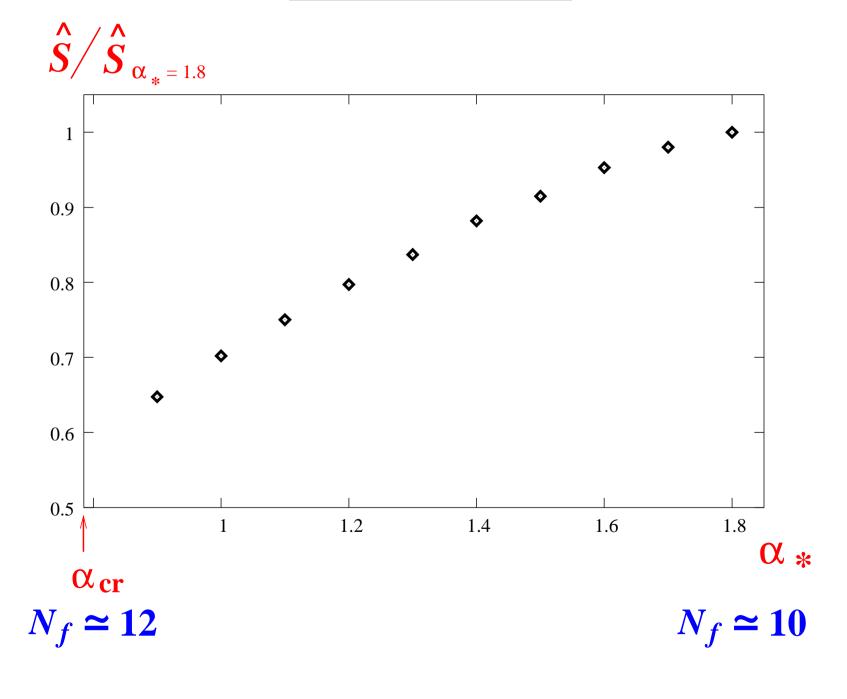


Numerical Result

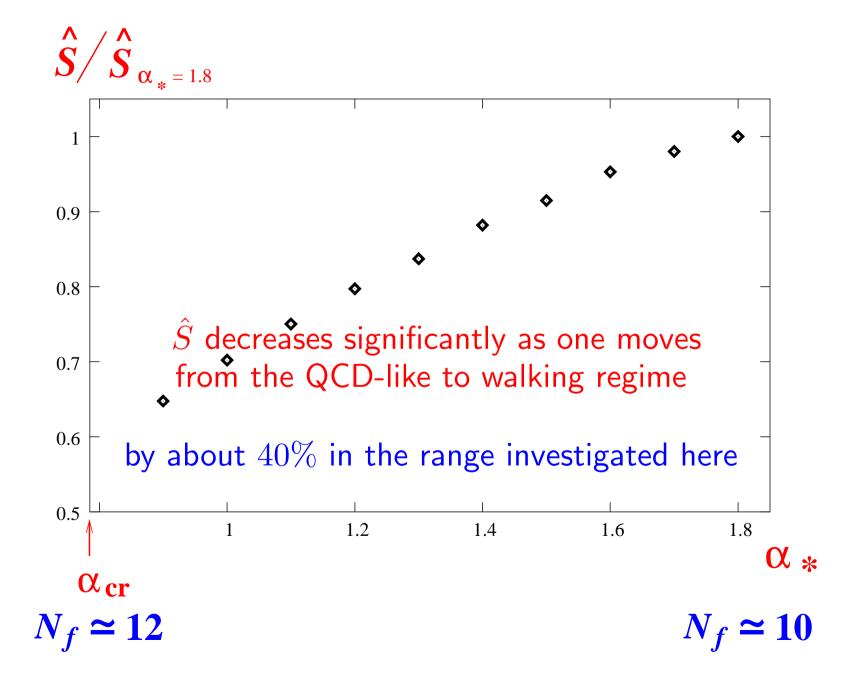
We calculate the S parameter of the large N_f QCD in the range from $N_f \simeq 10~(\alpha_* \simeq 1.8)$ to $N_f \simeq N_f^{\rm crit} \simeq 12~(\alpha_* \simeq 0.9)$

- $ullet N_f \simeq N_f^{
 m crit} \simeq 12$: Walking regime $(\Sigma/\Lambda \ll 1)$
 - ⇒ The scale relevant for the determination of physical quantities is near the IR fixed point.
- $ullet N_f \simeq 10$: QCD-like regime $(\Sigma/\Lambda \simeq 0.2)$
 - → The scale relevant for the determination of physical quantities is farther from the IR fixed point.

Numerical Result



Numerical Result



Summary

- ullet We calculated the S parameter in the large N_f QCD by solving the SD and IBS equations with the improved ladder approximation
- ullet We found that contribution from ladder diagrams to \hat{S} decreases significantly as one moves from the QCD-like to walking regime
- This results motivate us to do further investigations of walking gauge theories as candidates for the origin of the EWSB