

Light Higgs Boson Discovery Potential with ATLAS

Jonas Strandberg

on behalf of the ATLAS collaboration

Introduction

- A low mass Higgs boson is currently the most likely candidate.
 - The direct search limit is $m_H > 114.4$ GeV.
 - Electroweak fits sets an upper limit of $m_H < 199$ GeV.
- The mass of the Higgs boson determines all its properties.
- All hadronic states are impossible to separate from the background, and are difficult to trigger on.
- For Higgs masses between $115 \le m_H \le 200$ GeV there is a rich set of search channels! The final state is determined by:
 - The production mode of the Higgs boson.
 - The decay of the Higgs boson, and its daughter particles.
- This talk will give an overview of the most relevant channels.

Constraint on the Higgs Mass from Electroweak Fits

• The latest value of the top mass favors a light Higgs boson.

• The constraints from electroweak observables are summarized in the famous blueband plot, $m_H = 85^{+39}_{-28}$ GeV.

The ATLAS Experiment

- The Atlas Detector:
 - Length 44 m.
 - Diameter 22 m.
 - Weight 7000 ton.
- Momentum resolution (at $\sim 100~{\rm GeV}$):
 - μ , ~ 2 %.
 - $e, \gamma, \sim 1.5$ %.
 - jet, ~ 8 %.

- Total cross section ranges from 52 pb $(m_H = 115 \text{ GeV})$ to 20 pb $(m_H = 200 \text{ GeV})$.
- LO and NLO σ can differ by as much as a factor of 2.

Decay of the Higgs Boson

- Inclusive search channels:
 - $H \rightarrow ZZ$ for $m_H \gtrsim 130$ GeV.
 - $H \rightarrow WW$ for $m_H \gtrsim 145$ GeV.
 - $H \rightarrow \gamma \gamma$ for $m_H \leq 150$ GeV.
- Exclusive search channels:
 - VBF production with $H \rightarrow WW$ for $m_H \gtrsim 115$ GeV.
 - VBF production with $H \rightarrow \tau \tau$ for $115 \le m_H \le 150$ GeV.
 - ttH production with $H \rightarrow b\bar{b}$ for $m_H \leq 135$ GeV

- Most important backgrounds:
 - ZZ production. Irreducible.
 - $t\bar{t}$ and Zbb, with two semileptonic *b*-quark decays.

$\textbf{H} \rightarrow \textbf{ZZ} \rightarrow \textbf{4} \text{ Leptons}$

- The $ZZ \rightarrow 4\ell$ very clean signal.
 - Also use $ZZ \rightarrow \ell \ell q q, \ell \ell \nu \nu \dots$
- All of the Higgs boson's decay products are reconstructed.
- Very good sensitivity in this channel for $m_H \ge 130$ GeV.
- For $m_H > 2m_Z$ this becomes the "gold plated channel".
- Dominant background from continuum ZZ production.
 - Can be estimated from sidebands in data.

H to WW

- $BR(H \rightarrow WW)$ is nearly 98% for a Higgs boson with $m_H \approx 160$ GeV.
- Backgrounds from WW, $t\bar{t}$, WZ.
- Use the lepton spin correlations:

• No mass peak, have to use m_T :

$$m_T = \sqrt{2p_T^{\ell\ell} E_T (1 - \cos \Delta \phi)}$$

The Higgs to Two Photons Channel

- Typical event selection criteria:
 - Two isolated photons with $p_T > 40$ and $p_T > 25$.
 - Both photons within $|\eta| < 2.4$, excluding gaps.
 - Invariant mass of the photons: $M_H 2 < M_{\gamma\gamma} < M_H + 2 \text{ GeV}.$
- Mass resolution $\sigma(M_{\gamma\gamma}) \approx 1.36$ GeV.
- Photons conversions taken into account ($\sim 40\%$ of the events).
- EM calorimeter is crucial:
 - Energy and angle resolution.
 - Photon acceptance.
 - γ /jet and γ/π^0 rejection.

Backgrounds

- The largest background comes from irreducible $\gamma\gamma$ production. $\sigma_{\gamma\gamma} \approx 125$ fb/GeV. Need mass resolution $\sigma(M_{\gamma\gamma})/M_{\gamma\gamma} \approx 1$ %.
- Reducible background from jets misreconstructed as photons. $\sigma_{\gamma j} \approx 8 \cdot 10^2 \cdot \sigma_{\gamma \gamma}$ and $\sigma_{jj} \approx 2 \cdot 10^6 \cdot \sigma_{\gamma \gamma}$. Need rejection $R_j > 10^3$.

Importance of NLO Cross Sections

- Cross sections calculated at NLO:
 - $K \sim 1.8$ for $gg \rightarrow H$.
 - The full $\mathcal{O}(\alpha_S)$ calculation, plus box diagram, for the $\gamma\gamma$ background.
 - $K \sim 1.7$ for γj and jj backgrounds.

Event yield (at NLO) for 30 ${ m fb}^{-1}$		
m_H	120 GeV	130 GeV
$H \to \gamma \gamma$	815	758
$\gamma\gamma$	14100	9552
γj , $j j$	3967	3396
S/\sqrt{B}	6.06	6.22

• Gives dramatic improvement in sensitivity.

Combination of All Jet Multiplicities

- Do inclusive analysis. Use a combination of all jet multiplicities.
 - H + 0 jets from $gg \rightarrow H$.
 - H + 1 jet at NLO, plus VBF production with one lost jet.
 - H + 2 jets from VBF.

- Decrease in signal, increase in S/B with jet multiplicity.
 - Decrease in systematic uncertainty?
- This is a preliminiary study.
 - Looks promising.

Experimental Signature of VBF Events

- Typical selections for tag jets:
 - $p_T > 40$ and $p_T > 20$ GeV.
 - $\Delta \eta > 3.8$ between the tag jets.
- Apply a central jet veto:
 - No central jets with $p_T > 20$ GeV.
 - H decay products between tag jets.
- Powerful way to reduce backgrounds.
- Uncertainty from underlying and overlapping event, pile-up.

DPF MEETING, NOVEMBER 01, 2006

VBF Production with $H \rightarrow \tau \tau$ and $H \rightarrow WW$ Channels

- At low Higgs masses the largest sensitivity search channels are found in the vector boson fusion production mode.
- At least one of the W/τ 's have to decay leptonically.
- Main backgrounds are $t\bar{t}$, Wt, WW+jets, γ^*/Z +jets.
- Some selection criteria ($e\mu$):
 - $p_T^e > 15~{\rm GeV}, \, p_T^\mu > 10~{\rm GeV}.$
 - $|\eta_{\ell}| < 2.5$ and $M_{\ell\ell} < M_H/2$.
 - Tag jet cuts, central jet veto.
- τ reconstruction provide extra sensitivity or rejection.

VBF $\mathbf{H} \rightarrow \tau \tau$ **Channel and Tau Reconstruction**

- Label visible energy fractions x_{τ_1} and x_{τ_2} .
- Assume \vec{p}_T vector comes from the ν 's, and solve the equations for x_{τ_1} and x_{τ_2} .

$\textbf{VBF}~\mathbf{H} \rightarrow \mathbf{WW}~\textbf{Channel}$

• As in the inclusive *WW* analysis, spin correlations between the leptons are used to enhance the signal fraction.

• Signal to background in the VBF channel increases to ~ 3.6 .

Sensitivity of the VBF Channels

- Both $H \rightarrow \tau \tau$ and $H \rightarrow WW$ are sensitive for low Higgs masses.
- $H \rightarrow \tau \tau$:
 - $m_H \lesssim 145$ GeV.
- $H \rightarrow WW$:
 - $125 \le m_H \le 200$ GeV.
- If the two channels are combined, a 5σ discovery is possible for $m_H \gtrsim 130$ GeV with 10 fb⁻¹.

The $ttH \rightarrow \ell \nu bbbbjj$ Channel

- Spectacular, very energetic, final state!
- The ℓ from the t decay allows for triggering, even though $H \to b\bar{b}$.
- Dominant background is from non-resonant *ttbb* production.
 - Smaller backgrounds from ttZ, ttjj, WWbbjj ...

- To extract the signal:
 - Reconstruct all six jets.
 - Exactly 4 *b*-tagged jets.
 - Reconstruct the two t quarks.
 - Determine invariant mass of *b*-jets from the Higgs decay.
- The most challenging channel.

Combined Sensitivity

- Only LO results shown in plot.
- Full mass range covered after a few years of running.
- Several channels available for any given Higgs mass.
- VBF channels play important role for low Higgs masses.
- For $m_H \leq 120$ GeV three complementary channels:
 - $H \rightarrow \gamma \gamma$ ($M_{\gamma \gamma}$ resolution).
 - $t\bar{t}H$ (b-tagging).
 - $qqH \rightarrow qq\tau\tau$ (large $|\eta|$ jets).

Summary and Outlook

- Should a standard model Higgs boson exist, it cannot escape detection at the LHC.
- A Higgs with $m_H < 120$ GeV presents the greatest challenge, a combination of channels can be used.
- Discovering the Higgs boson is just the first step, the next step is to measure its mass and couplings.
- The first LHC collisions are scheduled for next year.
 - Very exciting times are ahead of us!