

Andy Haas (Columbia University) on behalf of the ATLAS collaboration

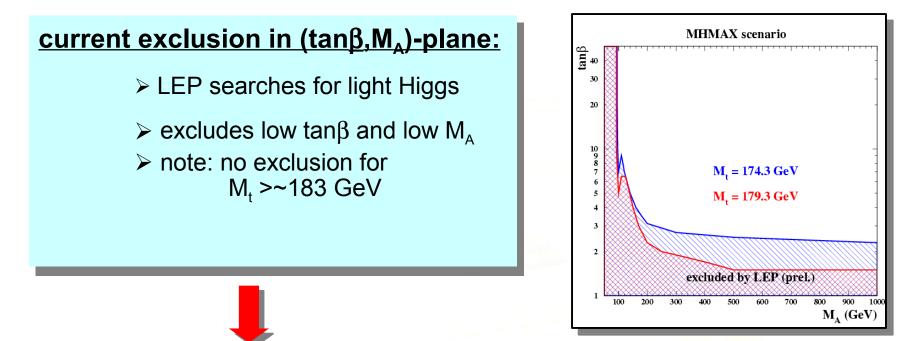
DPF'06 - Hawaii

MSSM Higgs Sector

- MSSM: 2 Higgs doublets \rightarrow 5 physical bosons: h, H, A, H⁺, H⁻
- > phenomenology at Born level described by $\tan\beta$, m_A
- mass prediction: M_h < M_z
- > couplings: $g_{MSSM} = \xi \cdot g_{SM}$
 - no coupling of A to W/Z
 - → large tan β : large BR(h,H,A→ττ,bb)

ξ	t	b/ au	W/Z
h	$\cos \alpha / \sin \beta$	-sin α /cos β	$sin(\alpha - \beta)$
Η	sinα/sinβ	$\cos \alpha / \cos \beta$	$\cos(\alpha - \beta)$
Α	cotβ	taneta	

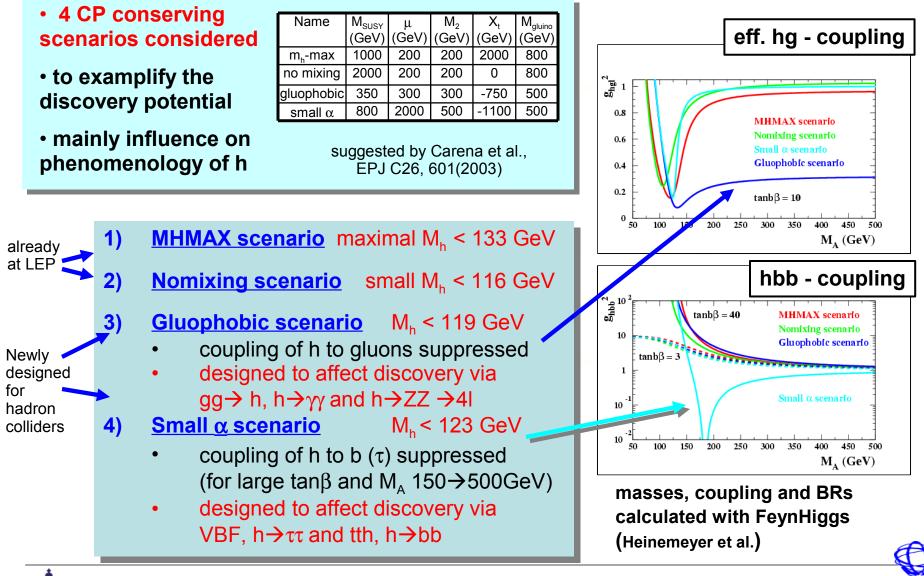
 $\alpha\!\!:$ mixing angle between CP even Higgs bosons (calculable from $tan\beta$ and $M_{_{\!A}})$


- large loop corrections to masses and couplings
- mainly dependent on t/ t sector
- parameters:
 - M_{top} and X_t , M_{SUSY} , M_2 , μ , M_{gluino}
- mass prediction M_h < 133 GeV (for M_t = 175GeV)

INIVERSITY

for exclusion bounds and discovery potential: fix the 5 parameters in benchmark scenarios and scan (tan β , M_A)- plane

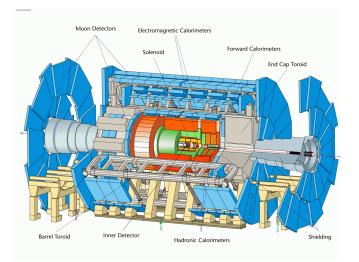
The $(tan\beta, M_A)$ -Plane



main questions for LHC/ ATLAS:

- Can at least 1 Higgs be discovered in the allowed parameter space?
- How many Higgs bosons can be observed ?
- Can we discriminate the SM from beyond the SM (like MSSM) ?

Benchmark Scenarios



JNIVERSITY

OLUMBIA

THE CITY OF NEW YORK

Technical Issues

- combination of latest results from (MSSM corrected) studies for SM Higgs boson and dedicated MSSM Higgs analysis (heavy higgs states)
- key performance numbers obtained from full simulation: (e.g. trigger efficiencies, b-tagging, τidentification, mass resolutions...)
- signal efficiencies and background expectations from fast simulations

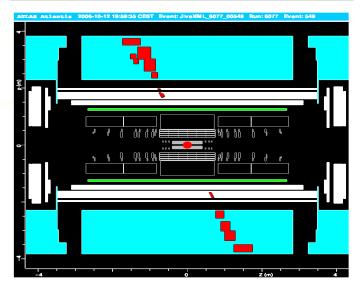
developments/ improvements:

- 2) new and updated search channels:
 - new: VBF with Higgs decay to $\tau\tau$, WW, $\gamma\gamma$.
 - new: tt→bW+bH→bqq+bτν
 - updated: ttH, H→bb (better simulation of bgr.)
 - updated/ new: bbH \rightarrow H \rightarrow µµ ($\tau\tau$), now also had. τ decay

3) improved theoretical calculations:

- FeynHiggs: full one-loop corrections and dominant twoloop corrections included (increase of M_h by several GeV)
- \rightarrow considered to give most accurate calculations at present

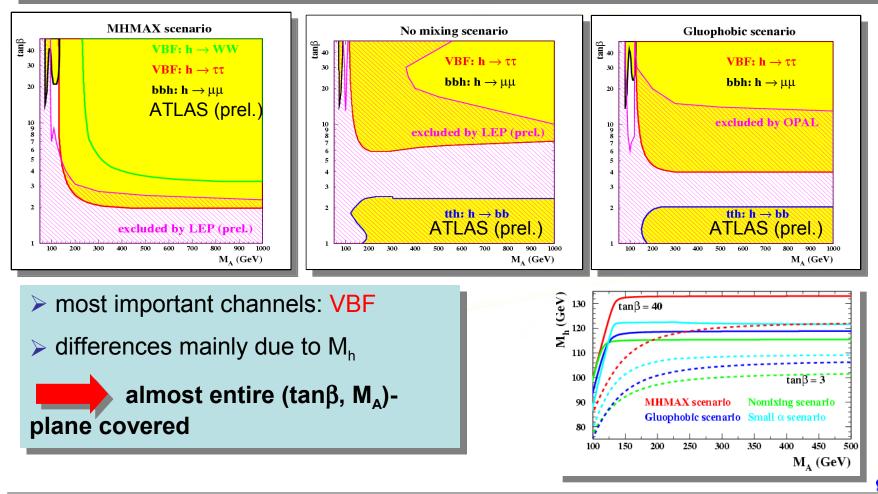
- two expected data sets: 30 fb⁻¹ and 300 fb⁻¹
- discovery = 5 σ excess using Poisson statistics
- no systematics included

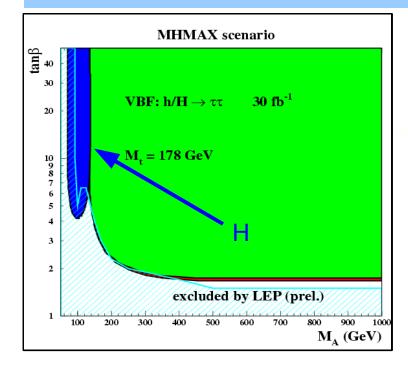


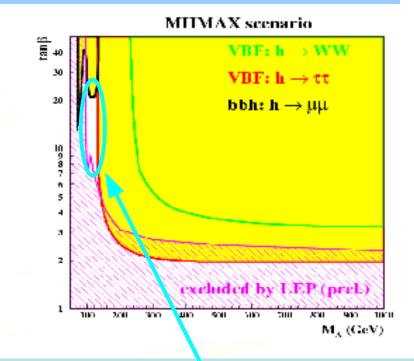
Becoming a Reality

First Cosmic rays observed by the combined ATLAS Tile+LAr calorimeters in the underground cavern this Fall!

Huge effort from ATLAS physicists to understand the detector (calibration, alignment, etc)

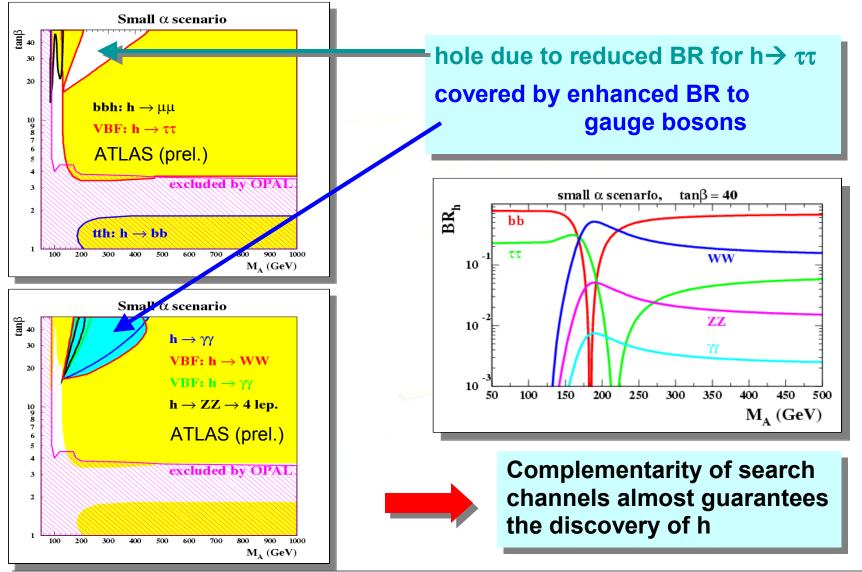



Light Higgs Boson (30 fb⁻¹)


h observable in entire parameter space and for all benchmark scenarios?

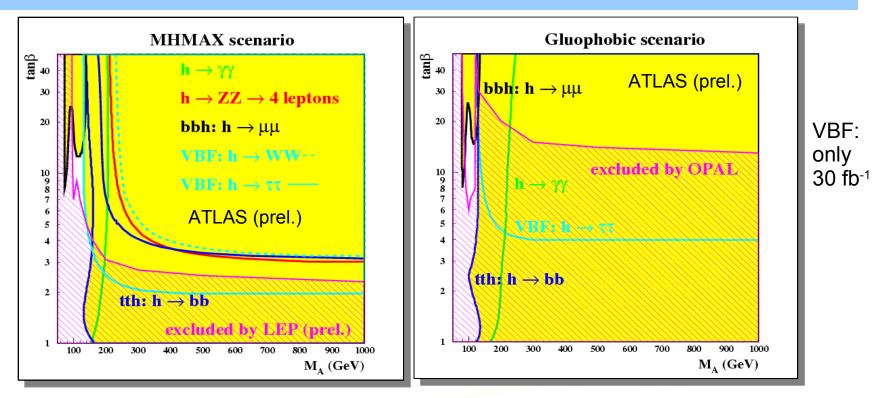
COLUMBIA UNIVERSITY

The Hole at Low mA


- VBF (hVV) decouples for high $\tan\beta$ and low m_A --> must use bbh, however...
- The $h \rightarrow \tau \tau$ has DY background and no mass reconstruction possible.
- $h \rightarrow \mu \mu$ is cleaner but with a very small BR.
- Therefore for small m_A the bbh with $h \rightarrow \mu \mu$ leaves a hole towards lower tan β

>At low mA from 90-100 GeV, the h becomes unobservable in most models

>However, the H is always observable in this region, from $H \rightarrow \tau \tau$



Light Higgs in Small α Scenario (30 fb⁻¹)

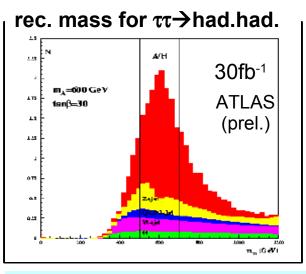
COLUMBIA UNIVERSITY

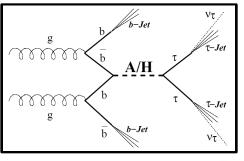
Light Higgs Boson (300 fb⁻¹)

- also $h \rightarrow \gamma \gamma$, $h \rightarrow ZZ \rightarrow 4$ leptons, tth \rightarrow bb contribute
- large area covered by several channels
 → stable discovery and parameter determination possible
- small area (M_h = 90 to 100 GeV) covered only by H

Columbia [Jniversity]

N THE CITY OF NEW YORK

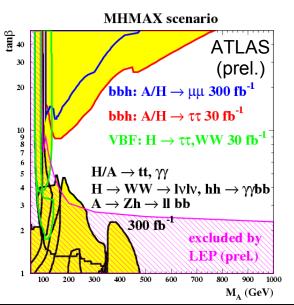



Neutral Heavy Higgs Bosons (H/A)

► example: bbH/A, H/A → ττ

discovery reach for H/A:

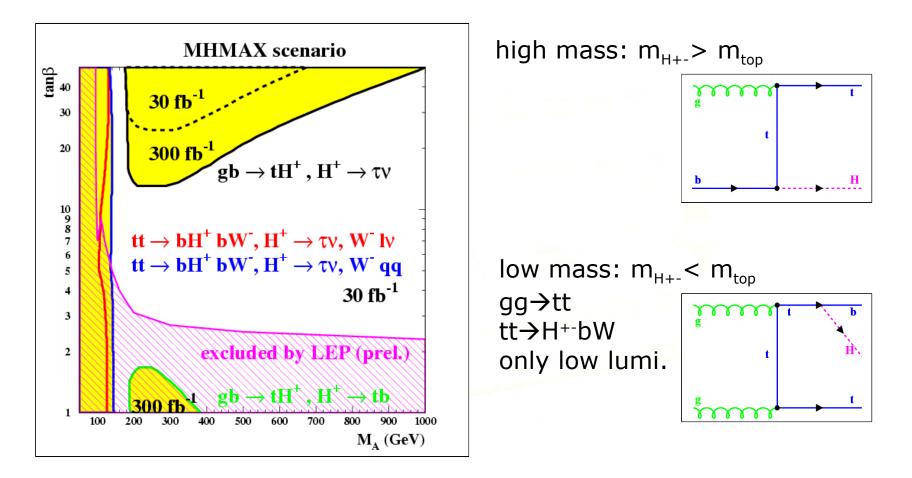
- $\sigma_{\text{prod}} \sim (\tan\beta)^2$; important at large $\tan\beta$
- new analysis: ττ→ had. had. ____
- BR(H/A $\rightarrow \tau \tau$) ~ 10 % , rest is bb



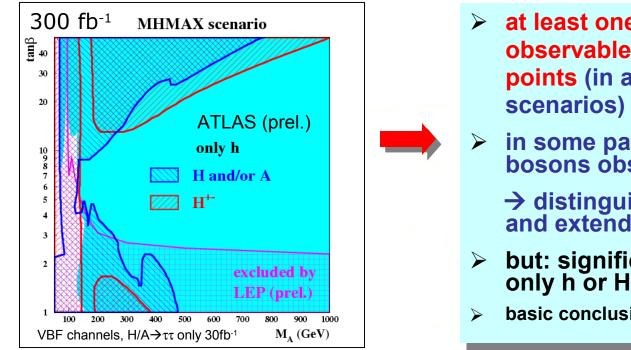
- New: take running b-quark mass for σ_{prod}
- only very few events remain after cuts (acceptance ~10⁻³)
- LVL1 trigger performance crucial

Olumbia [Iniversity

N THE CITY OF NEW YORK


 detailed study: >90% LVL1 efficiency for M_A>450GeV via "jet+E_{T,miss}" and "τ+ E_{T,miss}" triggers with a rate of ~1.4 kHz (within rate limit)

- bb H/A →bb ττ covers large tanβ region
- other scenarios similar
- intermediate tanβ region not covered


Charged Higgs Bosons

✤ A consistent study of the gap region (~m_{top}) is almost complete.

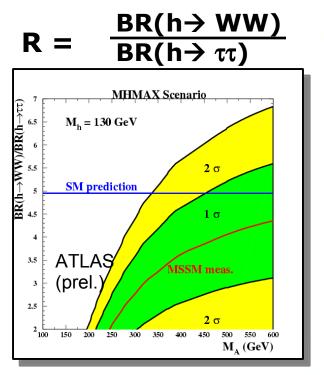
Overall Discovery Potential (300 fb⁻¹)

Olumbia [Jniversity]

THE CITY OF NEW YORK

- > at least one Higgs boson is observable for all parameter points (in all four benchmark
- in some parts: >1 Higgs bosons observable

→ distinguish between SM and extended Higgs sector

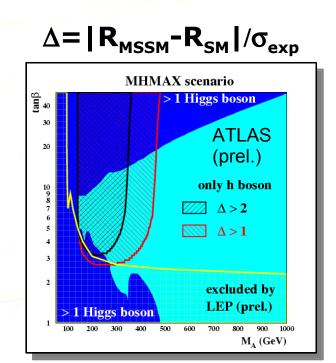

but: significant area where only h or H is observable.

basic conclusions independent of m_{ton}

ongoing: including SUSY decay modes to increase areas for heavy Higgs bosons, e.g. $H^{\pm} \rightarrow \chi^{\pm}_{1,2} \chi^{0}_{1,2,3,4} \rightarrow 3I + E_{T,miss}$ can SM be discriminated from extended Higgs sector by parameter determination e.g. via rate measurements?

SM or Extended Higgs Sector ?

- estimate of sensitivity from rate measurements in VBF channels (30 fb⁻¹)
- compare expected measurement of R in MSSM with prediction from SM



only statistical errors

N THE CITY OF NEW YORK

assume M_h exactly known

Columbia University

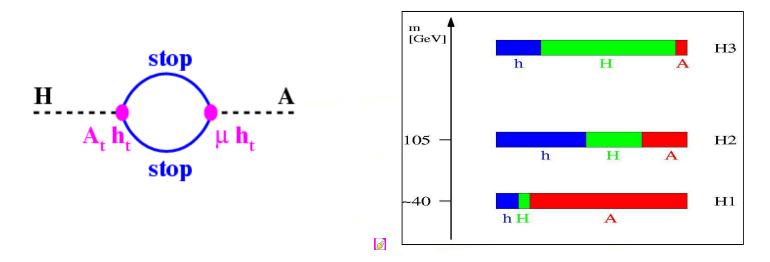
potential for discrimination

- seems promising
- needs further study incl. sys. errors

CP-Conserving Summary

- A consistent investigation of the ATLAS discovery potential in the MSSM Higgs sector with new MC studies and new theoretical calculations has been performed.
- In all 4 CP conserving MSSM benchmark scenarios at least one Higgs boson can be discovered.

Evaluation of discovery potenital with sys. err. in progress...


 In some areas of the parameter space more than one Higgs bosons can be discovered.

> Need work on discrimination between SM and extended Higgs sector in this case...

The CP-Violating CPX scenario

> CP conserving at Born level, but CP violation via complex A_{t} , A_{b} , M_{gl}

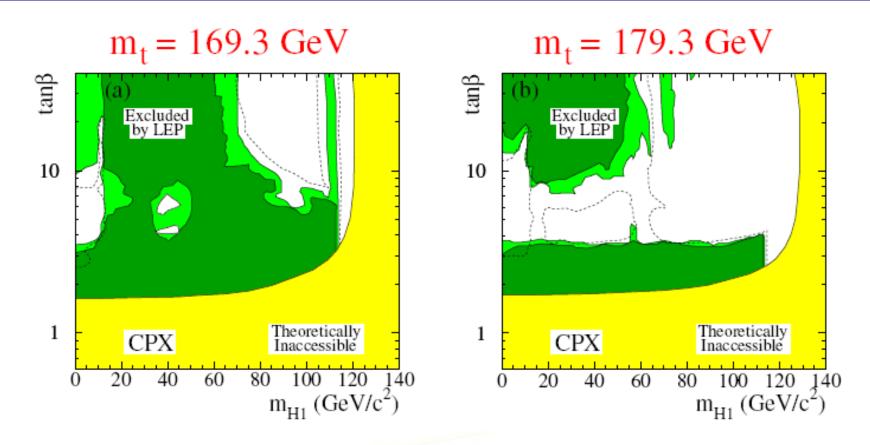
> CP eigenstates h, A, H mix to mass eigenstates H_1 , H_2 , H_3

➤ maximise effect → CPX scenario (Carena et al., Phys.Lett B495 155(2000)) arg(A_t)=arg(A_b)=arg(M_{gluino})=90 degrees

> scan of Born level parameters: tan β and M_{H+-}

Phenomenology in the CPX scenario

 \succ H₂,H₃ \rightarrow H₁H₁, ZH₁,WW, ZZ decays


branching ratios of H₂ and H₃, $tan\beta = 3$ ${\rm H}_{0.9}^{-1}$ **Production VBF**; $pp \rightarrow ttH_i$, bbH_i ; $H3 \rightarrow H1 Z$ $H3 \rightarrow H1 H1$ $pp \rightarrow H_i \& tt \rightarrow H^+bWb, gb \rightarrow H^+t$ 0.8 $H2 \rightarrow H1 Z$ $H2 \rightarrow H1 H1$ 0.7 0.6 $BR(H_1)$ 0.5 1 0.4 bb 0.3 0.2 0.10 -1 200 250 300 350 400 450 500 10 M_{H+-} (GeV) ττ >H₁,H₂, H₃ couple to W,Z WW coupling to gauge bosons , $tan\beta = 20$ $\overset{\circ}{\overset{}_{09}}\overset{\circ}{\overset{}_{09}}{\overset{}_{08}}$ -2 10 **H1** sum rule: 0.7 0.6 $\Sigma_i g_i^2 (ZZH_i)$ $\gamma\gamma$ 0.5 H2 cc 0.4 $= g_{SM}^2$ -3 0.3 10 **H3** 60 80 100 120 0.2 0.1M_{H1}[GeV] 0 150 200 250 350 400 300 450 500 100 $M_{H\!+\!-}^{}\left(GeV\right)$

Olumbia

N THE CITY OF NEW YORK

IVERSITY

LEP Limits in the CPX scenario

* Loss of sensitivity around $\tan\beta$ ~3-10 due to complexity of final states: (ZH2->6 jets... H₁H₂->bbbb etc.) and insensitivity to very low H1 mass

no absolute limit on mass of H₁ from LEP

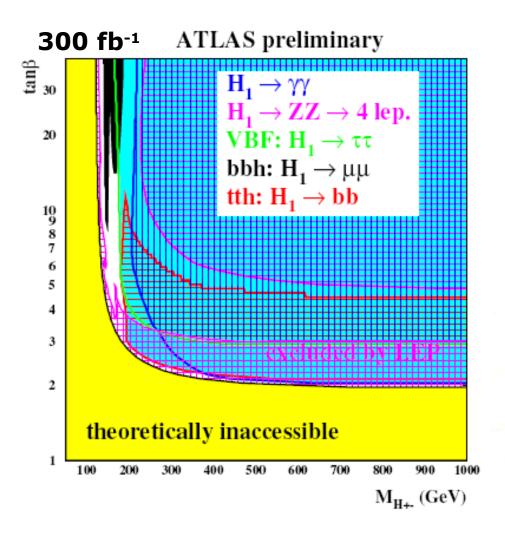
Columbia University

 \bullet strong dependence of excluded region on m_{top} and on calculation (FeynHiggs vs CPH)

CPX Scenario: A Light Higgs Boson H₁

main difference from CPC scenarios, weaker exclusion from LEP:

CPC scenarios: $M_h < M_z$ excluded

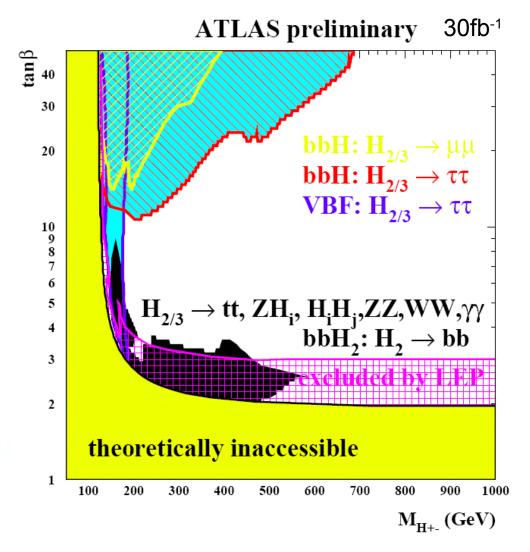

CPV: no limit on M_{H1}

ATLAS preliminary 300 fb⁻¹ tanß 30 2010 9 8 7 5 4 3 $\mathbf{2}$ theoretically inaccessible 20100 40 60 80 120140 M_{H1} (GeV) **VBF**: $H_1 \rightarrow WW$ **VBF**: $H_1 \rightarrow \tau \tau$ **bbh:** $H_1 \rightarrow \mu \mu$ tth: $H_1 \rightarrow bb$

Excellent summary in the CERN CPNSH Yellow Report: hep-ph / 0608079

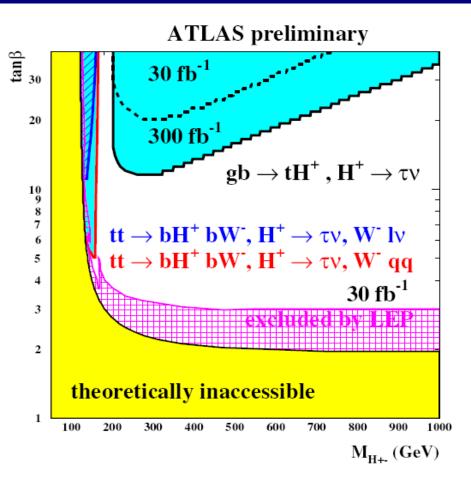
Jolumbia (Jniversity

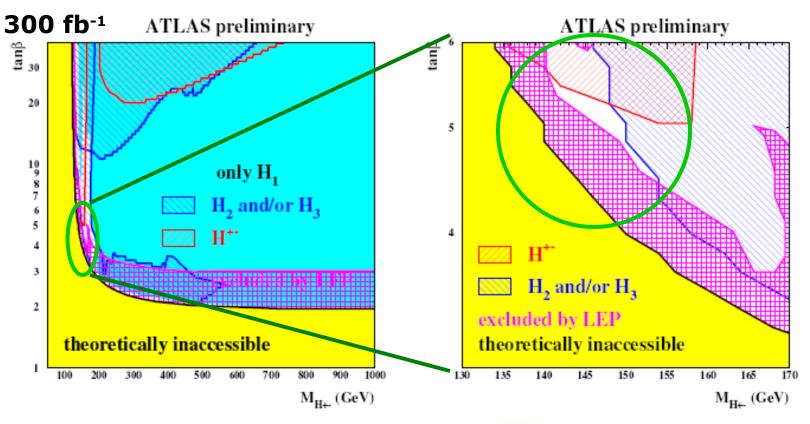
CPX Scenario: A Light Higgs Boson H₁


border at low tanβ due to availability of MC studies (VBF: $M_h > 110$ GeV, ttH and γγ : $M_h > 70$ GeV)

border at low M_{H+-} due to decoupling of H₁ from W,Z and t

CPX Scenario: Heavier Higgs Bosons H₂ and H₃


- The bbH cross section is decreasing with increasing H mass and decreasing tanβ
- There is a reduction in the ττ decay BR in favor of bb and H₂→ H₁H₁ while light H₁ was not yet studied for LHC


CPX Scenario: Charged Higgs

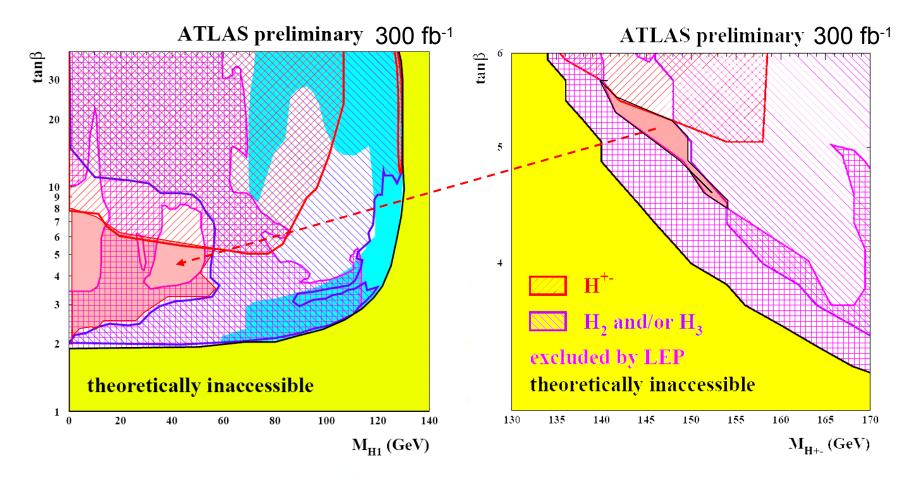
- The charged Higgs are still eigenstates
- Limits are very similar to CPC case...

Overall Discovery Potential in CPX Scenario

Small uncoverd region !

M_{H1}: < 70 GeV M_{H2}: 105 to 120 GeV

M_{H3}: 140 to 180 GeV


• The hole corresponds to light Higgs: m_{H1}<70, m_H+<m_{top}

Size of 'hole' depends on

- assumed M_t due to LEP exclusion
- FH versus CPSUPER

Covering the 'hole' in the CPX Scenario

promising channel:

tt \rightarrow bH+bW⁻ H+ \rightarrow H₁ W+ H₁ \rightarrow bb, same final state as ttH, H \rightarrow bb

COLUMBIA UNIVERSITY Andy Haas – DPF'06 Hawaii - Slide 24

Conclusions

*** CP-conserving MSSM:**

- whole parameter space covered by at least one Higgs boson evaluation of discovery potenital with sys. err. in progress...
- very possible that only one Higgs boson will be observable ongoing studies for SUSY decay modes and discrimination between SM and non-SM in this case...

CP-violating MSSM:

- possibly a 'hole' as M_h below 70 GeV
 - may be covered by $tt \rightarrow Wb H^{+-} b, H^+ \rightarrow WH_1 \rightarrow Wbb$
- otherwise at least one Higgs boson is observable

Thanks to: Markus Schumacher, Eilam Gross, Johannes Haller, and the ATLAS Higgs WG

