DPF2006+JPS2006

29 Oct - 3 Nov, Honolulu, Hawaii

Tau in ATLAS: Performance and Studies to be done with First Data

Markus Bischofberger The University of Melbourne On behalf of the ATLAS Collaboration

Outline

- Motivation
- **The ATLAS experiment**
- Tau reconstruction and identification
- Physics studies with first data: $W \rightarrow \tau v$ and $Z \rightarrow \tau \tau$
- Higgs searches: MSSM: $H/A \rightarrow \tau \tau$
- SUSY prospects

Why are tau leptons important at LHC

Taus:

- Massive particles with only EW interaction
- Non-negligible Yukawa coupling to SUSY particles
- Lifetime long enough for potential measurement of polarization, spin correlations, parity
 - **Decay well measured in low-energy experiments**
- Ideal to probe for "New Physics"
 - But: jet-like signature difficult because of QCD background at hadron machines

At LHC:

- Large statistics already in first data: $W \rightarrow \tau v$, $Z \rightarrow \tau \tau$
- Discovery potential for Higgs boson(s)
- Discovery potential for SUSY
- Polarization sensitive to SUSY parameters
- Possible signature for "extra dimensions"

ATLAS Detector

Detector characteristics Width: 44m Diameter: 22m Weight: 7000t

DPF2006+JPS2006 October 31, 2006

Tau Facts

Properties:

- M_τ=1.78 GeV
 - cτ = 87 μm

Tau Decays

- Leptonic Decays: 35.2 %
 - \succ $\tau \rightarrow l\nu\nu$
 - Identification by lepton (e/µ) and missing E_T
- Hadronic Decays
 1 prong: 49.5 %

$$\succ \tau \rightarrow v_{\tau} + \pi^{\pm} + n(\pi^{0})$$

3 prong: 15.2 %

$$\succ \tau \rightarrow v_{\tau} + 3\pi^{\pm} + n(\pi^0)$$

Tau Jets:					
very collimated:					
• 90% of the energy is contained					
in a 'cone' of ΔR=0.2					
$(\Delta R^2 = \Delta n^2 + \Lambda \omega^2)$ around the jet					
direction for $F_{->50}$ GeV					
Low multiplicity					
• 1 or 3 tracks					
Hadronic, EM energy deposition					
Charged pions					
 Photons from π^o 					

Tau Reconstruction

Characteristics of tau jets (collimation, multiplicity) can be exploited for tau identification

>2 Algorithms in ATLAS

- TauRec (default):
 - starts from cluster in calorimeter (or isolated track)
 - Associate tracks to τ jet candidate
 - Energy calibration by direct weighting of calorimeter cells (H1-style)

• Tau1P3P (new):

- starts from good leading track
 - 1 prong or 3 prong τ jet candidate
 - depending on number of nearby tracks
- Calibrated energy from inner detector (charged) and calorimeter (neutrals):
- "Energy Flow"

Fake τ jets:

- QCD jets
- Electrons: late showers, strong Bremsstrahlung
- Muon interactions in calorimeter

TauRec

Reconstruction of tau candidates:

- Start from calorimeter cluster (E_T > 15 GeV) (or track p_T > 2 GeV)
- Associate nearby tracks $(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.3 \text{ and } p_T > 2 \text{GeV})$
- Acceptance: |η|<2.5

Tau identification:

- cut on likelihood constructed from discriminating variables:
 - e.g. for ε(τ)=30%, 15< p_T< 334.5
 → Rejection(QCD jets) = 400 10 000
- good energy resolution: ~10%

Tau1P3P

new algorithm for tau reconstruction and ID in ATLAS:

- not typical τ jet but 1 prong and 3 prong decays:
 - $\tau \rightarrow 1$ track + n π^0 (Tau1P)
 - au
 ightarrow 3 tracks + n π^0 (Tau3P)

Reconstruction of tau candidates:

- Start from hadronic track (p_T> 9 GeV)
- / find nearby tracks ($p_T > 1$ GeV, $\Delta R < 0.2$)

Identification:

 Combination of observables to one discriminating variable

e.g.: ε(τ)=30%, 10 GeV< p_T< 60 GeV

Jet rejection = 600 - 1000

 better energy resolution for 3 prong

Physics with First Data: $W \rightarrow \tau \upsilon$, $Z \rightarrow \tau \tau$

First few weeks of data taking with luminosity of 10³¹⁻³² cm⁻²s⁻¹:

Prospects for taus with 10-100 pb⁻¹

- Use the single-prong τ decays to check hadronic scale
- Initial low luminosity provides unique opportunity to study hadronic signature of low energy τ in ATLAS
- Extract τ signal from most abundant τ sources as early as possible

requires powerful τ and E_T^{miss} trigger from very start Signal/Background expected to 10x worse than at Tevatron:

$$\frac{\sigma_{\rm LHC}(W,Z)}{\sigma_{\rm LHC}(bkg)} \approx \frac{10 \times \sigma_{\rm TEV}(W,Z)}{100 \times \sigma_{\rm TEV}(bkg)}$$

Physics with First Data: $W \rightarrow \tau \upsilon$

Expected Trigger Rates:

- Signal: ~0.01 Hz
 - → 10⁵ signal events for 100 pb⁻¹
 - QCD background: ~20 Hz
 - → Inclusive S/B ~ 0.0005!

Expected rates for 100 pb ⁻¹	$\begin{array}{l} W \rightarrow \tau \nu, \\ \tau \rightarrow \text{hadron} \end{array}$	$W \to e \nu$	$\begin{array}{c} Z \rightarrow \tau \tau, \\ {}_{1\tau \rightarrow hadron} \end{array}$
σ.B (pb)	11200	17300	1500
τ30i + xE35	~ 15 000	~ 250 000	~ 1300
τ20i + xE25	~ 60 000	~ 560 000	~ 3500

Assuming eff ~ 80% for τ trigger, ~ 50% for τ reco/id

"Counting" experiment

- Evidence in N_{track} spectrum
- Trigger at lowest possible thresholds for low-luminosity operation:
 - $E_{T}^{miss} > 20 \text{ GeV}$
 - tau jet with $p_T > 15 \text{ GeV} (\tau 15i)$
- Raise missing E_T cut as luminosity goes up

Mass Reconstruction: $Z \rightarrow \tau\tau$, $H \rightarrow \tau\tau$

- $\vec{E_T^{\text{miss}}} = \vec{p_T^{\nu_1}} + \vec{p_T^{\nu_2}}$
- Collinear Approximation: $\vec{p}_i^v = \xi \cdot p_i^{\tau, vis}$
- Solve two linear equations for ξ_1 and ξ_2
- Physical Solutions: $\xi_1, \xi_2 > 0$

Good E_T^{miss} reconstruction is essential!

Markus Bischofberger

Physics with First Data: $Z \rightarrow \tau \tau$

- Fundamental benchmark for $H \rightarrow \tau \tau$ • Less abundant than $W \rightarrow \tau \upsilon$ (~10x less) BUT:
 - Can trigger on lepton (e, μ) of 1st τ (lep-had final state)
 - Use same sign (lepton, τ) events to control background
 - N_{track} spectrum and M_{vis} of lep-had system Invariant mass of Z with collinear approximation
 - Mass resolution dominated by E_T^{miss} resolution

With 10³¹cm⁻²s⁻¹ luminosity:

Start with 15 GeV threshold for lepton and tau. Tighten selection to improve resolution of invariant mass.

Expect to observe about 300 events (e,µ) in 100pb⁻¹ with 20% background. Possibility to loosen cuts? bb background still to be included/checked

MSSM Neutral Higgs: $A/H \rightarrow \tau \tau$

- Direct (gg→A) and associate (gg→bbA) production
- The τ decays provide the cleanest signature for the discovery of A/H at high mass (and relatively high tan β)
 - All the final states (lep-lep, lep-had, hadhad) contribute at different mass range
- Mass resolution (collinear approx.) < 15% in all channels
- Backgrounds:

•

- W+jets, Z+jets, tt, bb and QCD
- The dominant background changes depending on m_A
- Associate production (bbA/H) provides additional rejection by b-tagging against the main backgrounds: Z+jet, W+jet, QCD

m_{rr} (GeV)

DPF2006+JPS2006 October 31, 2006

SUSY events with taus in final state

- In mSUGRA and most SUSY models, all SUSY particles decay into invisible $\widetilde{\chi}_1^0$
 - no mass peaks
 - measure kinematic endpoints of mass combinations

Tau signatures important in many regions of mSUGRA parameter space especially for $tan\beta >> 1$

SUSY Decays:

- Challenging because of escaping neutrino
 - distorted mass distribution, but endpoint can still be measured
- Interesting because:
 - Non-negligible Yukawa coupling
 - Large left-right mixing (~m_τtanβ)
 - Tau polarization measurement can be used to constrain SUSY model
- Tau can dominate in some region of mSUGRA parameter space (e.g. funnel)

Conclusion

- **Tau jet reconstruction algorithms in ATLAS:**
 - TauRec: good results, seeded from cluster (or track)
 - Tau1P3P: Track based, identification of 1 or 3 prong tau decays, most powerful for low p_T
 - two complementary tau algorithms, so robust tau reconstruction should be available to be tested with first data

Taus from $W \rightarrow \tau v$ and $Z \rightarrow \tau \tau$ will be available with first data of LHC: \rightarrow excellent possibility to understand detector performance

Efficient tau identification is crucial for discovery of new physics:

- MSSM Higgs:
 - Η/A→ττ
 - (H⁺→τυ)
- SUSY signatures with taus in final state
 extra dimensions, new theories?

BACKUP SLIDES

SM Higgs: $qqH \rightarrow qq\tau\tau$

Production: Vector Boson Fusion (VBF):

only ~20% of total cross section but signature can be exploited for bkg suppression

Dominant backgrounds: Zjj, WWjj (EW+QCD), tt Forward tagging jets:

difficult forward region: jet calibration
 Central-Jet Veto:

sensible to pile-up

Mass reconstruction (collinear approx.):

- E_T^{miss} is essential
- dominant experimental issue

Combined results for lep-had, lep-lep (e,µ trigger)

- better performance for lep-had (mass resolution)
- About 5 sigma for 110 GeV < m_H < 140 GeV

Search for MSSM Higgs boson

Charged Higgs: $H^{\pm} \rightarrow \tau \upsilon_{\tau}$

Production: gb→tH⁺

Decay: $t \rightarrow bjj, H^+ \rightarrow \tau v$

Final State: τ, 3jets, E_T^{miss}

Backgound suppression:

- tt: b-tag / b-veto
 - Wt: transverse mass (τ-E_T^{miss})
 - τ from H⁺ is 100% polarized:
 - further signal enhancement with respect to W bkg

almost background free, limited by signal

Invariant mass cannot be reconstructed because of v in final state but m_H can be determined with likelihood method

tan β determination by measuring rate of this channel: $\sigma(gb \rightarrow tH^{\pm}) \times BR(H^{\pm} \rightarrow \tau \upsilon) \propto tan^{2}\beta$

- statistical uncertainty dominates
 - Precision improves as rate $H^+ \rightarrow \tau \upsilon$ increases with tan β

DPF2006+JPS2006 October 31, 2006

Markus Bischofberger

Charged Higgs and Large Extra Dimensions

In MSSM (general: 2 Higgs Doublet of Type II, 2HDM-II) τ from H 100% polarized: $H^- \rightarrow \tau_{R} \overline{\upsilon}$

In Large Extra Dimension (LED) right handed "bulk" neutrino can exist. Coupling to Higgs enhanced by large number of Kaluza-Klein states:

 $H^- \rightarrow \tau_R \overline{\nu} + \tau_I \psi$

Bulk neutrino

Polarization asymmetry:

$$\mathbf{A} = \frac{\Gamma(\mathbf{H}^{-} \to \tau_{\mathrm{L}} \psi) - \Gamma(\mathbf{H}^{-} \to \tau_{\mathrm{R}} \overline{\upsilon})}{\Gamma(\mathbf{H}^{-} \to \tau_{\mathrm{L}} \psi) + \Gamma(\mathbf{H}^{-} \to \tau_{\mathrm{R}} \overline{\upsilon})}$$

model dependent:

- MSSM: A=-1
- LED: -1<A<1

For 1 prong τ decays:

reconstruction of p_{π}/E_{iet} could be used to distinguish between MSSM and LED scenarios Further measurement of asymmetry may provide a distinctive signature for LED

Systematic Uncertainties: A/H $\rightarrow \tau \tau$

• Detector resolution:

- Resolution of E_T^{miss}:
 - increase mass window by 20%,
 - signal acceptance unchanged
- Identification of the τ and b-jets:
 - decrease tau-ID efficiency from 55% to 40%
 - decrease b-tagging efficiency from 70% to 60%
 - rejection factors unchanged
- Jet energy scale:
 - Absolute jet energy scale in ATLAS estimated to be known with 3% accuracy:
 - all jet energies raised by 3% which alters acceptance due to cuts of the transverse energy

	$m_{A/H}$	$\tan\!\beta$	Signal	Background	Significance
Standard analysis	600	30	20.4	7.4	5.8σ
	800	45	19.6	6.8	5.8 σ
Detector resolution	600	30	20.4	9.4	5.2σ
	800	45	19.6	8.3	5.3 σ
τ identification	600	30	14.9	7.5	4.3σ
and b-tagging	800	45	13.8	5.7	4.4σ
jet energy scale	600	30	18.6	8.6	5.0σ
	800	45	16.7	7.3	4.8σ

Table 10: Study of the influence of systematic uncertainties of the significance of the channel (bb)A/H \rightarrow (bb) τ (had) τ (had).

mSUGRA

Experimental Conditions at LHC

- Proton-proton collisions with cms energy of 14 GeV Luminosity:
 - First run with 14 GeV in 2008:
 - increasing to reach ~10³³ cm⁻²s⁻¹ = "low luminosity" phase
 - 30 fb⁻¹ between 2008 and 2010/2011
 - "high luminosity" phase: ~10⁻³⁴ cm⁻²s⁻¹
 - → ~300 fb⁻¹ by 2014/2015
 - Pile-up:
 - low luminosity: ~2
 - high luminosity: ~24

pp interactions per bunch crossing every 25 ns (40MHz)

Trigger output rate for offline analysis: ~200 Hz

The ATLAS detector

 $\begin{array}{l} \gamma \text{-electrons, jets, } E_t^{\text{miss}}, \, \sigma_{\text{E}} \\ | \eta | \text{ coverage, b-tagging} \end{array}$

Thin Superconducting Solenoid (B=2T)

 $\label{eq:LAr_EM_Calorimeter} \begin{array}{l} \mbox{LAr_EM_Calorimeter} (|\eta| < 3.2): \\ \mbox{L} \times \mbox{R} = 13.3 m \times 2.25 m \\ |\eta| \le 3.2 \ (4.9) \\ \mbox{\sigma}_{E}/\mbox{E} = 10\%/\sqrt{\mbox{E} \oplus 0.7\%} \\ \mbox{PB-LAr} \end{array}$

 $\begin{array}{l} \mbox{Hadronic Calorimeter}:\\ \mbox{End caps: LArg}\\ \mbox{Barrel: Scintillator-tile}\\ \mbox{L}\times R = 12.2m{\times}4.25m\\ \mbox{\sigma}_{E}/E = 50\%/\sqrt{E}{\oplus}3\% \; (\mid\eta\mid\leq3) \end{array}$

Large Superconducting Air-Core Toroids

 $\frac{Muon Spectrometer}{L \times R} = 25 (46) \text{ m} \times 11 \text{m}$

σ(EtMiss)=0.46*sqrt(SumET))

