DPF2006+JPS2006

29 Oct – 3 Nov, Honolulu, Hawaii

Tau in ATLAS: Performance and Studies to be done with First **Data**

Markus Bischofberger The University of Melbourne On behalf of the ATLAS Collaboration

Outline

Motivation

•

•

- •**The ATLAS experiment**
- **Tau reconstruction and identification**
- **Physics studies with first data: W→τυ and Z→ττ**
- •**Higgs searches: MSSM: H/A→ττ**
- •**SUSY prospects**

Why are tau leptons important at LHC

Taus:

•

•

•

- **Massive particles with only EW interaction**
- • **Non-negligible Yukawa coupling to SUSY particles**
	- **Lifetime long enough for potential measurement of polarization, spin correlations, parity**
		- **Decay well measured in low-energy experiments**
- **Ideal to probe for "New Physics"**
	- **But: jet-like signature difficult because of QCD background at hadron machines**

At LHC:

- •**Large statistics already in first data: W→τυ, Z→ττ**
- •**Discovery potential for Higgs boson(s)**
- •**Discovery potential for SUSY**
- •**Polarization sensitive to SUSY parameters**
- •**Possible signature for "extra dimensions"**

ATLAS Detector

Detector characteristics Width: 44m Diameter: 22m Weight: 7000t

DPF2006+JPS2006 October 31, 2006 Markus Bischofberger 4

Tau Facts

Properties:

- •**M ^τ=1.78 GeV**
	- **c τ = 87 μ m**

Tau Decays

•

- • **Leptonic Decays: 35.2 %**
	- \triangleright $\tau \rightarrow$ lvv
	- • **Identification by lepton (e/ μ) and missing E T**
- • **Hadronic Decays 1 prong: 49.5 %**

$$
\triangleright \tau \to \nu_{\tau} + \pi^{\pm} + n(\pi^0)
$$

3 prong: 15.2 %

$$
\triangleright \tau \to v_\tau + 3\pi^{\pm} + n(\pi^0)
$$

Tau Reconstruction

Characteristics of tau jets (collimation, multiplicity) can be exploited for tau identification

¾**2 Algorithms in ATLAS**

- • **TauRec (default):**
	- **starts from cluster in calorimeter (or isolated track)**
	- \bullet **Associate tracks to τ jet candidate**
	- **Energy calibration by direct weighting of calorimeter cells (H1-style)**

• **Tau1P3P (new):**

- **starts from good leading track**
	- **1 prong or 3 prong τ jet candidate**
	- **depending on number of nearby tracks**
- **Calibrated energy from inner detector (charged) and calorimeter (neutrals):**
- **"Energy Flow"**

Fake τ jets:

- •**QCD jets**
- •**Electrons: late showers, strong Bremsstrahlung**
- •**Muon interactions in calorimeter**

TauRec

Reconstruction of tau candidates:

- • **Start from calorimeter cluster (E T > 15 GeV) (or track p T > 2 GeV)**
- • **Associate nearby tracks** $(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.3$ and $p_T > 2 \text{GeV}$)
- •**Acceptance: | η|<2.5**

Tau identification:

- • **cut on likelihood constructed from discriminating variables:**
	- • **e.g. for ^ε(τ)=30%, 15< p ^T< 334.5** $→$ **Rejection(QCD jets) = 400 - 10 000**
- •**good energy resolution: ~10%**

Tau1P3P

new algorithm for tau reconstruction and ID in ATLAS:

- **not typical ^τ jet but 1 prong and 3 prong decays:**
	- \bullet / $\tau \rightarrow$ **1 track + n** π^0 **(Tau1P)**
	- τ \rightarrow **3 tracks + n** π^0 **(Tau3P)**

Reconstruction of tau candidates:

- •Start from hadronic track (p_T> 9 GeV)
- •**find nearby tracks (pT>1 GeV, ΔR<0.2)**

Identification:

•

•

•

• **Combination of observables to one discriminating variable**

 \blacktriangleright e.g.: ε(τ)=30%, 10 GeV< p_T< 60 GeV

Jet rejection = 600 - 1000

• **better energy resolution for 3 prong**

Physics with First Data: $W{\rightarrow}\tau\upsilon$, $Z{\rightarrow}\tau\tau$

First few weeks of data taking with luminosity of 1031-32 cm-² s-1:

Prospects for taus with 10-100 pb-1

- •**Use the single-prong τ decays to check hadronic scale**
- • **Initial low luminosity provides unique opportunity to study hadronic signature of low energy τ in ATLAS**
- \bullet **Extract τ signal from most abundant τ sources as early as possible**

requires powerful $\bm{\tau}$ and $\bm{\mathsf{E}}_{\bm{\tau}}$ **miss trigger from very start Signal/Background expected to 10x worse than at Tevatron:**

$$
\frac{\sigma_{LHC}(W,Z)}{\sigma_{LHC}(bkg)} \approx \frac{10 \times \sigma_{TEV}(W,Z)}{100 \times \sigma_{TEV}(bkg)}
$$

Physics with First Data: $\rm\,W\rightarrow \tau\upsilon$

Expected Trigger Rates:

Signal: ~0.01 Hz

•

•

•

- **10 5 signal events for 100 pb-1**
- **QCD background: ~20 Hz**
- **Inclusive S/B ~ 0.0005!**

Assuming eff ~ 80% for τ trigger, ~ 50% for τ reco/id

"Counting" experiment

- Evidence in N_{track} <code>spectrum</code>
- • **Trigger at lowest possible thresholds for low-luminosity operation:**
	- •**E Tmiss >20 GeV**
	- •**tau jet with p T > 15 GeV (^τ15i)**
- • **Raise missing E T cut as luminosity goes up**

Mass Reconstruction: $Z{\rightarrow}\tau\tau,$ ${\rm H}\mathop{\rightarrow}\!\tau\tau$

- $E_T^{\text{miss}} = p_T^{\nu_1} + p_T^{\nu_2}$
- Collinear Approximation: $\vec{p}_i^v = \xi \cdot p_i^{\tau, \text{vis}}$
- Solve two linear equations for ξ_1 and ξ_2
- Physical Solutions: ξ_1 , $\xi_2 > 0$

Good E Tmiss reconstruction is essential!

Physics with First Data: $\ Z\rightarrow\tau\tau$

- • **Fundamental benchmark for H [→] ττ** • **Less abundant than W→τυ (~10x less) BUT:**
- **Can trigger on lepton (e, μ) of 1st τ (lep-had final state)**
- **Use same sign (lepton, ^τ) events to control background**
	- $\mathsf{N}_{\mathsf{track}}$ spectrum and M_{vis} of lep-had system **Invariant mass of Z with collinear approximation**
	- • **Mass resolution dominated by E Tmiss resolution**

With 10 31 **cm⁻²s⁻¹ luminosity:** $\qquad \qquad \qquad$ $\qquad \qquad$

•

•

•

•

Start with 15 GeV threshold for lepton and tau. Tighten selection to improve resolution of invariant mass.

Expect to observe about 300 events (e, μ) in 100pb-1 with 20% background. Possibility to loosen cuts? bb background still to be included/checked

MSSM Neutral Higgs: $\rm{A/H}\,\rightarrow\,\tau\tau$

- •• Direct (gg→A) and associate (gg→bbA) **production**
- **The τ decays provide the cleanest signature for the discovery of A/H at high mass (and relatively high tan β)**
	- **All the final states (lep-lep, lep-had, hadhad) contribute at different mass range**
	- **Mass resolution (collinear approx.) < 15% in all channels**
	- **Backgrounds:**

•

•

•

•

- **W+jets, Z+jets, tt, bb and QCD**
- • **The dominant background changes depending on m A**
- • **Associate production (bbA/H) provides additional rejection by b-tagging against the main backgrounds: Z+jet, W+jet, QCD**

SUSY events with taus in final state

- **In mSUGRA and most SUSY models, all** ${\bf SUSY}$ particles decay into invisible $\stackrel{\sim}{{\boldsymbol{\chi}}}_1^0$ $\widetilde{\chi}$
	- •**no mass peaks**
	- • **measure kinematic endpoints of mass combinations**

 Tau signatures important in many regions of mSUGRA parameter space especially for tanβ >> 1

SUSY Decays:

•

•

•

•

- $\widetilde{\chi}^0_2\rightarrow \widetilde{\tau}^{\pm}_1 \tau^{\mp} \rightarrow \widetilde{\chi}^0_1 \tau^{\pm} \tau^{\mp}$
- **Challenging because of escaping neutrino**
	- • **distorted mass distribution, but endpoint can still be measured**
- **Interesting because:**
	- •**Non-negligible Yukawa coupling**
	- •**Large left-right mixing (~mτtanβ)**
	- • **Tau polarization measurement can be used to constrain SUSY model**
- **Tau can dominate in some region of mSUGRA parameter space (e.g. funnel)**

Conclusion

- **Tau jet reconstruction algorithms in ATLAS:**
	- • **TauRec: good results, seeded from cluster (or track)**
		- **Tau1P3P: Track based, identification of 1 or 3 prong tau decays, most powerful for low p T**
			- **two complementary tau algorithms, so robust tau reconstruction should be available to be tested with first data**

 Taus from W→**τυ and Z→ττ will be available with first data of LHC: excellent possibility to understand detector performance**

Efficient tau identification is crucial for discovery of new physics:

•**MSSM Higgs:**

•

•

•

•

- •**H/A→ττ**
- •• $(H^+ \rightarrow \tau \nu)$
- • **SUSY signatures with taus in final state**
	- **extra dimensions, new theories?**

BACKUP SLIDES

SM Higgs: $qqH \rightarrow qq\tau\tau$

Production: Vector Boson Fusion (VBF):

 only ~20% of total cross section but signature can be exploited for bkg suppression

Dominant backgrounds: Zjj, WWjj (EW+QCD), tt Forward tagging jets:

- • **difficult forward region: jet calibration Central-Jet Veto:**
	- **sensible to pile-up**

Mass reconstruction (collinear approx.):

E_rmiss is essential

•

•

•

•**dominant experimental issue**

Combined results for lep-had, lep-lep (e,μ trigger)

- •**better performance for lep-had (mass resolution)**
- •• **** About 5 sigma for 110 GeV < m_H < 140 GeV

Search for MSSM Higgs boson

DPF2006+JPS2006 October 31, 2006 Markus Bischofberger 18

•

Measurement of tan β

Charged Higgs: H^{\pm} τ $\rightarrow \tau v$ H

Production: gb →tH +

Decay: ^t → bjj, H+ [→] τυ

Final State: τ, 3jets, $\mathbf{E_{T}}$ **miss**

Backgound suppression:

tt: b-tag / b-veto

•

•

•

- **Wt: transverse mass (τ-E Tmiss)**
- **τ from H + is 100% polarized:**
	- •**further signal enhancement with respect to W bkg**

almost background free, limited by signal

Invariant mass cannot be reconstructed because of υ in final state but m_H can **be determined with likelihood method**

tan β determination by measuring rate of this channel: $\sigma(gb \to tH^{\pm}) \times BR(H^{\pm} \to \tau \nu) \propto \tan^2 \beta$

- **statistical uncertainty dominates**
	- **precision improves as rate H ⁺→τυ increases with tan β**

DPF2006+JPS2006 October 31, 2006 Markus Bischofberger 19

Charged Higgs and Large Extra Dimensions

Bulk neutrino

In MSSM (general: 2 Higgs Doublet of Type II, 2HDM-II) τ from H 100% polarized: $\, \mathrm{H}^-\to \tau_{\scriptscriptstyle R}^-\overline{\mathrm{U}}$

In Large Extra Dimension (LED) right handed "bulk" neutrino can exist. Coupling to Higgs enhanced by large number of Kaluza-Klein states:

 $\mathrm{H}^- \rightarrow \tau_{\textrm{\tiny R}} \overline{\textrm{v}} + \tau_{\textrm{\tiny L}} \psi$

Polarization asymmetry:

$$
A = \frac{\Gamma(H^- \to \tau_L \psi) - \Gamma(H^- \to \tau_R \overline{\upsilon})}{\Gamma(H^- \to \tau_L \psi) + \Gamma(H^- \to \tau_R \overline{\upsilon})}
$$

model dependent:

- •**MSSM: A=-1**
- •**LED: -1<A<1**

For 1 prong ^τ decays:

•**reconstruction of** p_{π}/E_{jet} **could be used to distinguish between MSSM and LED scenarios Further measurement of asymmetry may provide a distinctive signature for LED**

Systematic Uncertainties: $\text{A/H}\,\rightarrow\,\tau\tau$

•**Detector resolution:**

- •Resolution of E_T^{miss} :
	- •increase mass window by 20%,
	- •signal acceptance unchanged
- • **Identification of the τ and b-jets:**
	- •decrease tau-ID efficiency from 55% to 40%
	- •decrease b-tagging efficiency from 70% to 60%
	- •rejection factors unchanged
- • **Jet energy scale:**
	- • Absolute jet energy scale in ATLAS estimated to be known with 3% accuracy:
		- • all jet energies raised by 3% which alters acceptance due to cuts of the transverse energy

Table 10: Study of the influence of systematic uncertainties of the significance of the channel ($b\overline{b}$)A/H \rightarrow ($b\overline{b}$) τ (had) τ (had).

mSUGRA

Experimental Conditions at LHC

- •**Proton-proton collisions with cms energy of 14 GeV** • **Luminosity:**
	- •**First run with 14 GeV in 2008:**

increasing to reach ~1033 cm-2 s-¹ ⁼"low luminosity" phase

30 fb-¹ between 2008 and 2010/2011

- •**"high luminosity" phase: ~10-34 cm-² s-¹**
- **→ ~300 fb-1 by 2014/2015**
- **Pile-up:**

•

- •**low luminosity: ~2**
- •**high luminosity: ~24**

pp interactions per bunch crossing every 25 ns (40MHz)

•**Trigger output rate for offline analysis: ~200 Hz**

The ATLAS detector

γ-electrons, jets, E_t^{miss}, σ_E coverage, b-tagging

Thin Superconducting Solenoid (B=2T)

LAr EM Calorimeter (| η|<3.2): $\tt L \times R = 13.3$ m \times 2.25m $|η| ≤ 3.2 (4.9)$ $\sigma_{\rm E}$ /E = 10%/ $\sqrt{\rm E}$ ⊕0.7% PB-LAr

Hadronic Calorimeter : End caps: LArg Barrel: Scintillator-tile $\tt L \times R = 12.2$ m \times 4.25m $\sigma_\textsf{\scriptsize E}$ /E = 50%/ \sqrt E⊕3% (│η│≤3)

Large Superconducting Air-Core Toroids

Muon Spectrometer $\tt L \times R = 25~(46)~\text{m} \times 11 \text{m}$

σ(EtMiss)=0.46*sqrt(SumET))

Inner Detector : Semiconductor Pixel and Strips Straw Tube Tracking Detector (TRT) $\tt L \times R = 7$ m \times 1.15m $\rm \sigma_{R \phi}$ =12-16μm, $\rm \sigma_{Z}$ =66-580μm σ (P_T)/P_T = 0.05%P_T⊕1%

