APS-DPF2006 October 31, 2006

# Weak Interactions of Supersymmetric Staus at High Energies<sup>\*</sup>

# Jessica Uscinski

Univeristy of Arizona

uscinski@physics.arizona.edu

\*Huang, Reno, Sarcevic, and Uscinski, hep-ph/0607216

# Motivation

#### • Probing SUSY with neutrinos\*

- \* Ultrahigh energy neutrinos interact with nucleons in Earth producing supersymmetric charged sleptons
- \* SUSY models where supersymmetric breaking scale is  $> 5 \times 10^6$  GeV, LSP is gravitino and NLSP is charged slepton (stau)
- \* Stau has long lifetime, can travel large distances
  through Earth and be detected in neutrino telescopes

# • Propagation and energy loss of stau important for detection

<sup>\*</sup>I. Albuquerque, G. Burdman and Z. Chacko, Phys. Rev. Lett. 92, 221802 (2004), I. Albuquerque, G. Burdman and Z. Chacko, hep-ph/0605120, M. Ahlers, J. Kersten and A. Ringwald, hep-ph/0604188.

#### **Energy Loss**

The energy loss is given by

$$-\frac{dE}{dX} = \alpha + \beta E$$

- E particle energy
- X range of particle
- $\alpha$  ionization energy loss ~  $2 \cdot 10^{-3}$  GeV cm<sup>2</sup>/g, dominant at low energies<sup>\*</sup>
- $\beta$  radiative energy loss, dominant at high energies

<sup>\*</sup>S. Iyer Dutta, M. H. Reno, I. Sarcevic and D. Seckel, Phys. Rev. D63, 094020 (2001)

#### **Different Processes**

Energy loss parameter  $\beta$  has contributions from different processes

$$\beta^{i}(E) = \frac{N_{A}}{A} \int dy \ y \frac{d\sigma^{i}(y, E)}{dy}$$

y is fraction of slepton energy loss

$$y = \frac{E - E'}{E}$$

- Bremsstrahlung:  $\tilde{\tau}Z \to \gamma \tilde{\tau}Z$
- Pair production:  $\tilde{\tau}Z \to \tilde{\tau}Ze^+e^-$
- Photonuclear:  $\tilde{\tau}N \to \tilde{\tau}X \to \text{dominant for } \mathbf{E} > 10^6 \text{ GeV}, \text{ scales as } \frac{1}{m}^*$
- Neutral current:  $\tilde{\tau}N \to \tilde{\tau}X$
- Charged current:  $\tilde{\tau}N \to \tilde{\nu}X \to \text{removes particle}$

<sup>\*</sup>M. H. Reno, I. Sarcevic and S. Su, Astropart. Phys. 24, 107 (2005).

#### Lifetime and Range

Competing processes, decay and energy loss:

$$c\tau = \left(\frac{\sqrt{F}}{10^7 GeV}\right)^4 \left(\frac{100 GeV}{m}\right)^5 10 km$$

$$X(E, E_0) = \int dX' P(E, E_0, X')$$

Without including weak interactions:

- Characteristic range for staus is 10<sup>4</sup> km
- Characteristic range for taus is 10 km (for comparison)

Does weak interaction contribution to the energy loss have an effect on the range?

#### **NC** Interactions



•  $\beta^{NC}$  is small when compared to  $\beta^{nuc} \sim 10^{-8} \text{ cm}^2/\text{g}$ 

## $\beta^{NC}$ Mass Dependence



- Mass dependence is weaker than  $\frac{1}{m}$  for m < 200 GeV
- For m > 200 GeV,  $\frac{1}{m}$  scaling

#### **CC** Interactions



- Stau cross section is roughly equal to lepton case  $\cdot \sin^2 \theta_f$  indicates mixing of LH and RH staus. Take  $\sin \theta_f = 1, m_{\tilde{\nu}} = m_{\tilde{\tau}} + 50 \text{ GeV}$
- CC interactions become significant at higher energies

#### **Characteristic Distances: Stau**



•  $E_0 = 10^3 \text{ GeV}$ 

- At low energies, ionization energy loss dominates
- For energies ~  $10^8$  GeV, CC interaction dominates for  $\sin\theta_f = 1$

# Range: Stau, $E_0 = 10^8 \text{ GeV}$



•  $m_{\tilde{\tau}} = 250 \text{ GeV}$ 

#### What is the stau flux at the detector?

- Astrophysical sources of neutrinos
- Neutrino interactions in Earth (attenuation)
- Stau production  $(\nu + N \rightarrow ...\tilde{\tau} + \tilde{\tau})$ : small cross section
- Stau propagation and energy loss



# Conclusions

- NC interactions for staus do not have an effect on range for the masses and energies considered.
- Maximal values for  $\sin \theta_f$  in CC interactions for staus yield significant suppression in range above  $10^8 - 10^9$  GeV, but parameter space is open.
- Implications for detecting staus in neutrino telescopes.
  \* IceCube energy threshold ~ 10<sup>6</sup> GeV, maximal CC interactions does not affect range significantly
  - \* ANITA energy threshold is higher,  $\sim 10^8$  GeV, maximal CC interactions decrease range

#### NC cross sections



#### NC beta



#### **CC** cross sections



#### More CC



#### **Characteristic Distances: Tau**

