Search for Lepton Flavor Violation \(\tau \) Decay at Belle experiment

Y. Miyazaki (Nagoya university)
for the Belle Collaboration

Contents

Introduction
(Motivation, Analysis method, Belle detector)
Results for LFV \(\tau \) decay
Summary
Introduction

- Quark mixing
 - Flavor mixing in quark sector have been studied well
 - Beautifully described by CKM matrix including CPV
- Neutrino mixing
 - Discovered
 - Provides hints of new physics beyond SM
- Lepton Flavor Violation (mixing) decays for charged lepton
 - Not observed yet
 - Very small probability via neutrino oscillation.

\[\mathcal{B} \propto (\Delta m^2_{\nu}/m_W^2)^2 \simeq 10^{-49} \sim 10^{-52} \]

\[\Rightarrow \text{So, difficult to observe } \tau \text{ LFV at current experiment.} \]

\[\downarrow \]

If we observed LFV decays in charged lepton, they would be a clear signature of New Physics.
Many extensions of the SM predict LFV decays
⇒ SUSY(+Seesaw), Extra dimension etc.

SUSY-GUT or SUSY-Seesaw model

Charged lepton mixing would occur through the mixing of slepton mass matrix

\[\mathcal{B} \propto ((m_{\tilde{L}})^2)_{ij}^2 \]

⇒ enhanced up to the current experimental sensitivity

LFV depends on the some powers of lepton mass \((m_\ell)^n\)
⇒ \(\tau\) is the heaviest lepton and have strongly couplings to New Physics

Previous experimental results for LFV \(\tau\) decays
CLEO sensitivities on \(\mathcal{B} < \mathcal{O}(10^{-6})\)
Expected branching fraction for LFV τ decay

SUSY
- Gauge mediated (MSSM)
- Higgs mediated (MSSM)
- R-parity-V

SO(10) with ν_R

Extra dimension

Will show various LFV τ decay modes at Belle experiment:
- $\tau^- \rightarrow \ell^- \gamma$
- $\tau^- \rightarrow \ell^- \eta/\eta'/\pi^0$
- $\tau^- \rightarrow \ell^- K^0_S$
- $\tau^- \rightarrow \ell h h'$
- $\tau^- \rightarrow \ell^- V^0$

$\mathcal{B}(\text{LFV})$
Analysis method for LFV τ decay (1)

Procedure for LFV τ decay
- Select low multiplicity track events with a zero net charge
- Separate into two hemispheres using thrust axis
 → signal and tag
- Reduce background using PID and kinematic informations
 - lepton ID, K/π separation
 - missing momentum
 - # of γ's etc.

Complete reconstruction

$M_{\text{inv}} \approx m_\tau = 1.777$ GeV

$\Delta E = E_{\text{rec}}^{CM} \sqrt{s}/2 \approx 0$ GeV

1-prong decay (85%) (or 3-prongs (15%))
Signal extraction in M_{inv} and ΔE plane
- $M_{\text{inv}} \sim m_\tau = 1.777$ GeV/c^2
- $\Delta E = E^{\text{CM}} - E_{\text{beam}}^{\text{CM}} \sim 0$ GeV

Blind the signal region
- Estimate the background in signal region using sideband data
 ↓
After open the blinded region
- counting # of events in signal region.
- apply maximum likelihood fit and extract # of events in signal region.

Set an upper limits if no excess of signal events compared expected background.

$$B(\text{LFV } \tau \text{ decay}) < \frac{890\%C.L.}{2\varepsilon N_{\tau\tau}}$$
Belle Detector

KEKB: $e^+(3.5\,\text{GeV})e^-(8\,\text{GeV})$

$\sqrt{s} = 10.58\,\text{GeV}$

$\sigma(\tau\tau) \sim 0.9\,\text{nb}$

$(\sigma(B\bar{B}) \sim 1.0\,\text{nb})$

B-factory is also τ factory!!!

Integrated luminosity:

$>650/\text{fb}$ collected

$\Rightarrow 5.8 \times 10^8 \tau^+\tau^-$

For lepton ID

e efficiency 93%

μ efficiency 88%

F/B asymmetric detector

Good vertex resolutions and particle ID capabilities
$\tau \rightarrow \mu \gamma$ is the most attractive mode in new physics.

e.g. MSSM + Seesaw model

$- \mathcal{B}(\tau \rightarrow \mu ee)/\mathcal{B}(\tau \rightarrow \mu \gamma) \sim 1/94$

$- \mathcal{B}(\tau \rightarrow \mu \mu \mu)/\mathcal{B}(\tau \rightarrow \mu \gamma) \sim 1/440$

Assuming $|\delta_{\tau \mu}^R| = |\delta_{\tau \mu}^L| = 1$

$\mathcal{B}(\tau \rightarrow \mu \gamma) = 3.0 \times 10^{-6} \times \left(\frac{\tan \beta}{60}\right)^2 \times \left(\frac{1\, \text{TeV}}{M_{\text{SUSY}}}\right)^4$

(hep-ex/0406701)

<table>
<thead>
<tr>
<th>model</th>
<th>$\mathcal{B}(\tau \rightarrow \mu \gamma)$</th>
<th>$\mathcal{B}(\tau \rightarrow 3\ell)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>mSUGRA+Seesaw</td>
<td>$<10^{-7}$</td>
<td>$<10^{-7}$</td>
</tr>
<tr>
<td>SUSY+SO(10)</td>
<td>$<10^{-8}$</td>
<td>$<10^{-10}$</td>
</tr>
<tr>
<td>SM+seesaw</td>
<td>$<10^{-9}$</td>
<td>$<10^{-10}$</td>
</tr>
<tr>
<td>SUSY+Higgs</td>
<td>$<10^{-10}$</td>
<td>$<10^{-7}$</td>
</tr>
</tbody>
</table>

Previous analysis @ Belle

$\mathcal{B}(\tau \rightarrow \mu \gamma) < 3.1 \times 10^{-7}@86.3/\text{fb}$
$\tau \rightarrow \mu \gamma (2)$

$e^+ e^- \rightarrow \tau^+ \tau^- \rightarrow \mu \gamma$ (signal side)

\leftarrow 1-prong + missing (tag side)

veto μ for rejecting $\mu \mu (+\gamma)$ events

Data: 535/fb
BG: $\tau \tau \gamma$ (ISR), $\mu \mu \gamma$ (ISR)

Applying tighter cuts compared with previous analysis

- m^2_{miss} vs. p_{miss} correlation
- $m^2_{\nu} (= (E_{\mu\gamma} - E_{\text{tag}})^2 - p^2_{\text{miss}})$ cut
- others

(a) Thrust

(b) m^2_{ν}

\[m^2 (\text{GeV}^2/c^4) \]

\[\Delta E (\text{GeV}) \]

\[M_{\mu\gamma} (\text{GeV}/c^2) \]

preliminary
Remaining events:
54 eve. (@86/fb) → 94 eve. (@535/fb)

Efficiency
11% → 6.7%

Signal region
5σ box → 2σ ellipse

Signal extraction
Unbinned maximum likelihoods method:
\[\mathcal{L} = \frac{\exp(- (s + b))}{N!} \prod_{i=1}^{N} (sS_i + bB_i) \]

\(s = -3.9 \) events and \(= 13.9 \) events
(allow negative s and its prob. \(\sim 25\% \))
\[\Rightarrow s_{90\% CL} = 2.0 \] events

\[\mathcal{B}(\tau \rightarrow \mu \gamma) < 4.5 \times 10^{-8} @ 90\% C.L. \]
(Preliminary hep-ex/0609049)
MSSM+Seesaw Model

\[\mathcal{B}(\tau \rightarrow \mu \gamma) = 3.0 \times 10^{-6} \times \left(\frac{\tan \beta}{60} \right)^2 \times \left(\frac{1\text{TeV}}{M_{\text{SUSY}}} \right)^4 \]

\[\tan \beta \]

\[m_{\text{SUSY}} \ (\text{TeV}/c^2) \]

\[\text{Belle} \]

\[\text{Babbar} \]

Excluded region

⇒ Improve a factor of 7.1 compared old results

<table>
<thead>
<tr>
<th></th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. Lum.</td>
<td>86/fb</td>
<td>535/fb</td>
</tr>
<tr>
<td>Upper Lim.</td>
<td>3.1×10^{-7}</td>
<td>4.5×10^{-8}</td>
</tr>
</tbody>
</table>
Same methods as $\tau \to \mu \gamma$ analysis

$s = -0.14$ events and $= 5.14$ events (allow negative s and its prob. $\sim 48\%$)

$\mathcal{B}(\tau \to e\gamma) < 1.2 \times 10^{-7}$ @ 90\% C.L.

(Previous: $\mathcal{B}(\tau \to e\gamma) < 3.9 \times 10^{-7}$ @ 86/fb (PLB 613, 20(2006)))

\Rightarrow Improve a factor of 3.3 compared previous results
LFV in Higgs mediated model is sensitive to $\mu \eta$ and $\mu \mu \mu$ decay

$$\mathcal{B}(\tau \rightarrow \mu \eta) = 8.4 \times 10^{-7} \left(\frac{\tan \beta}{60} \right)^6 \left(\frac{100 \text{GeV}/c^2}{m_A} \right)^4$$

(M. Sher, PRD 66, 057301 (2002))

Comparison with $\mu \mu \mu$

- enhanced as $(m_s/m_\mu)^2$
- color ($\times 3$)
- larger phase space than $\mu \mu \mu$ decay

$\Rightarrow \tau \rightarrow \mu \eta$ is improved by factor of 8.4 compared $\tau \rightarrow \mu \mu \mu$ decay.

$$\mathcal{B}(\tau \rightarrow \mu \eta) : \mathcal{B}(\tau \rightarrow \mu \gamma) : \mathcal{B}(\tau \rightarrow 3\mu) = 8.4 : 1.5 : 1$$

Previous analysis@ Belle

$$\mathcal{B}(\tau \rightarrow \mu \eta) < 1.5 \times 10^{-7}@154/\text{fb} \ (\text{PLB B622, 218}(2005))$$
Analysis

Data: 401/fb
Decay mode: $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$
BG: $\tau \tau$ and $q \bar{q}$ events

Cut: Similar cuts as previous analysis, but applying tighter cuts
For example,
BG rejection by m^2_{miss} vs p_{miss}
Separate two cut using tag informations
Hadronic tag \Rightarrow one ν
Leptonic tag \Rightarrow two νs
\Rightarrow Effective cuts to reduce BG
Signal region: 90% ellipse:
(a region which contains 90% # of signal MC events)
Signal extraction: Counting method

<table>
<thead>
<tr>
<th>mode</th>
<th>$\eta \rightarrow \gamma \gamma$</th>
<th>$\eta \rightarrow \pi^+\pi^-\pi^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eff.</td>
<td>6.4%</td>
<td>6.8%</td>
</tr>
<tr>
<td>Expected #</td>
<td>0.40±0.20</td>
<td>0.24±0.24</td>
</tr>
<tr>
<td>Obs. #</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UL$_{90%\text{C.L.}}$</td>
<td>$<1.2 \times 10^{-7}$</td>
<td>$<2.0 \times 10^{-7}$</td>
</tr>
</tbody>
</table>

$\Rightarrow B(\tau \rightarrow \mu\eta) < 6.5 \times 10^{-8}$

(Preliminary hep-ex/0609013)

Improve a factor of 2.3 compared with previous analysis
Constraint on $\tan \beta$ and M_A

Prediction with MSSM with seesaw

$$\mathcal{B}(\tau \rightarrow \mu \eta) = 8.4 \times 10^{-7} \left(\frac{\tan \beta}{60} \right)^6 \left(\frac{100 \text{ GeV}/c^2}{m_A} \right)^4$$

(M. Sher, PRD 66, 057301 (2002))

(CDF and DØ results: $p\bar{p} \rightarrow h/H/Ab\bar{b} \rightarrow b\bar{b}b\bar{b}$ from RUN II)

(LEP results: LEP Higgs Working Group)
Apply similar cuts as $\tau \to \mu \eta$ analysis

(Preliminary hep-ex/0609013)

$\mathcal{B}(\tau \to e\eta) < 9.2 \times 10^{-8}$ \hspace{1cm} $\mathcal{B}(\tau \to \mu\eta') < 1.3 \times 10^{-8}$ \hspace{1cm} $\mathcal{B}(\tau \to e\eta') < 1.6 \times 10^{-7}$ \hspace{1cm} $\mathcal{B}(\tau \to \mu\pi^0) < 1.2 \times 10^{-7}$

BG: $\tau \to \pi\pi^0\nu$ for $\tau \to \mu\pi^0$ and negligible for others.

$\mathcal{B}(\tau \to e\pi^0) < 8.0 \times 10^{-8}$
\(\tau \rightarrow \ell K^0_S \) (1)

\(\tau \rightarrow \ell K^0_S \) (where \(K^0_S \rightarrow \pi^+\pi^- \))

Dataset for this analysis @ 281 fb\(^{-1}\)

Event selection

- \(p_{\text{miss}} > 0.4 \) GeV/c
 - within the fiducial volume
- \(10 > E_{\text{total}}^{CM} > 5.29 \) GeV
- \(\cos \theta_{\text{tag-miss}} > 0.0 \)
- \# of \(\gamma \) in signal side \(\leq 1 \)
- \# of \(\gamma \) in tag side \(\leq 2 \)
- \(\cos \theta_{\ell K^0_S} \) vs. \(p_{\ell K^0_S} \) cut
 - See plot on the right

\[\cos \theta_{\ell K^0_S} < 0.14 \log (p_{\ell K^0_S} - 2.7) + 0.7 \] cut

Eff. of \(\cos \theta_{\ell K^0_S} \) vs. \(p_{\ell K^0_S} \) cut for each MC

- Signal 99%
- \(\tau \tau \) 0.7%, uds 16%
After events selections $\varepsilon = 11.8\%$ for eK_S^0
$\varepsilon = 13.5\%$ for μK_S^0

Background:
$D^{(*)\pm} \rightarrow \ell^\pm \nu K_S^0$
$\pi^\pm K_S^0$

In signal region
— Expected background
0.2 ± 0.2 events
— Data
No events in either mode
↓
Set upper limits on branching fraction at 90% C.L.

$\mathcal{B}(\tau \rightarrow eK_S^0) < 5.6 \times 10^{-8}$
$\mathcal{B}(\tau \rightarrow \mu K_S^0) < 4.9 \times 10^{-8}$
(PLB369, 159(2006))
Improved by a factor of 16 and 19 compared with CLEO
(Previous upper limits: 9.1(9.5)×10^{-7} for $eK_S^0(\mu K_S^0)$)
\[\tau \to \ell hh' \text{ and } \ell + \text{Vector meson} \ (1) \]

\[\ell h^+h^- \ (h, h' = \pi \text{ or } K) \]

\[e^+e^- \to \tau^+\tau^- \to \ell + (\rho^0, K^*, \bar{K}^*, \phi) \text{ (signal side)} \]

\[\leftrightarrow 1\text{-prong + missing (tag side)} \]

(Including lepton number violation, e.g. \(\tau^- \to \ell^+h^-h'^- \))

Data: 158/\text{fb}

BG suppression

by flight length and R2

Two-dimensional PDF:

\[\frac{L_{\text{signal}}}{L_{\text{signal}} + L_{\text{uds}}} > 0.45 \]

\[\Rightarrow \text{signal } 90\% \text{ remained} \]

uds 60\% removed
Dataset for this analysis @ 158 fb$^{-1}$

Signal region: 90% reactangle

$\mathcal{B}(\tau \rightarrow l hh') < (1.8 \sim 8.0) \times 10^{-7}$

$\mathcal{B}(\tau \rightarrow l V^0) < (2.0 \sim 7.7) \times 10^{-7}$

(PLB640, 138 (2006))

Background: $\tau\tau$, uds and 2photon
Summary

We have searched for a lepton flavor violating τ decay at Belle. No observation and sensitivity to lepton flavor violating τ decay branching fraction is approaching $10^{-7} \sim 10^{-8}$

$\quad \Rightarrow$ Improvement of 1–2 orders over CLEO

$\quad \Rightarrow$ Reached the level of some new physics

$\quad \Rightarrow$ Provide constraints on the new physics models

B-factory is a good τ factory!

Thus, in additional to new physics search in B decay, we provide sensitivities to new physics via lepton flavor violation and precision measurements also in τ decay
BACKUP
— High luminosity
— Asymmetric energy collider
\(e^- \ 8 \text{ GeV} / \ e^+ \ 3.5 \text{ GeV} \)
\(\sqrt{s} = 10.58 \text{ GeV} \) (\(\Upsilon(4s)\))
Integrated lum. > 650/fb @ 2006/10
Upper limits for $\tau \rightarrow lhh$ and ℓV^0

<table>
<thead>
<tr>
<th>Mode</th>
<th>$\Delta \varepsilon/\varepsilon$ (%)</th>
<th>Detection efficiency ε (%)</th>
<th>Expected background</th>
<th>Observed events</th>
<th>Upper limit on BF (90% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau \rightarrow e^- e^+ e^-$</td>
<td>5.3</td>
<td>7.5</td>
<td>5.80</td>
<td>2.62±0.07</td>
<td>5</td>
</tr>
<tr>
<td>$\tau \rightarrow e^+ e^- e^-$</td>
<td>2.3</td>
<td>5.8</td>
<td>5.14</td>
<td>0.60±0.26</td>
<td>1</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu^- \mu^+ \mu^-$</td>
<td>2.1</td>
<td>8.8</td>
<td>4.57</td>
<td>0.76±0.26</td>
<td>2</td>
</tr>
<tr>
<td>$\tau \rightarrow e^-\mu^+\mu^-$</td>
<td>7.7</td>
<td>11.5</td>
<td>4.44</td>
<td>0.76±0.30</td>
<td>1</td>
</tr>
<tr>
<td>$\tau \rightarrow e^-\pi^+\pi^-$</td>
<td>20.5</td>
<td>21.2</td>
<td>3.99</td>
<td>0.91±0.25</td>
<td>3</td>
</tr>
<tr>
<td>$\tau \rightarrow e^-\pi^-K^+$</td>
<td>17.4</td>
<td>18.2</td>
<td>4.11</td>
<td>1.27±0.41</td>
<td>0</td>
</tr>
<tr>
<td>$\tau \rightarrow e^-\pi^-K^-$</td>
<td>12.8</td>
<td>13.9</td>
<td>4.03</td>
<td>0.76±0.22</td>
<td>0</td>
</tr>
<tr>
<td>$\tau \rightarrow e^-K^-\bar{K}^+$</td>
<td>21.9</td>
<td>22.5</td>
<td>3.12</td>
<td>0.34±0.20</td>
<td>0</td>
</tr>
<tr>
<td>$\tau \rightarrow e^-K^-\bar{K}^-$</td>
<td>5.4</td>
<td>7.6</td>
<td>3.06</td>
<td>0.09±0.06</td>
<td>0</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu^-\pi^+\pi^-$</td>
<td>15.8</td>
<td>18.0</td>
<td>3.43</td>
<td>2.36±0.44</td>
<td>1</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu^-\pi^-K^+$</td>
<td>19.1</td>
<td>20.9</td>
<td>3.52</td>
<td>1.85±0.32</td>
<td>3</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu^-\pi^-K^-$</td>
<td>25.4</td>
<td>26.8</td>
<td>3.53</td>
<td>2.55±0.38</td>
<td>1</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu^-K^-\bar{K}^+$</td>
<td>8.7</td>
<td>12.2</td>
<td>2.76</td>
<td>0.48±0.19</td>
<td>2</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu^-K^-\bar{K}^-$</td>
<td>38.2</td>
<td>39.2</td>
<td>2.70</td>
<td>0.09±0.06</td>
<td>0</td>
</tr>
<tr>
<td>$\tau \rightarrow e^-\rho^0$</td>
<td>5.3</td>
<td>7.5</td>
<td>5.04</td>
<td>2.55±0.10</td>
<td>5</td>
</tr>
<tr>
<td>$\tau \rightarrow e^-K^*(892)^0$</td>
<td>17.4</td>
<td>18.2</td>
<td>4.12</td>
<td>0.76±0.34</td>
<td>0</td>
</tr>
<tr>
<td>$\tau \rightarrow e^-K^*(892)^0$</td>
<td>20.5</td>
<td>21.2</td>
<td>3.68</td>
<td>0.16±0.10</td>
<td>0</td>
</tr>
<tr>
<td>$\tau \rightarrow e^-\phi$</td>
<td>21.9</td>
<td>22.5</td>
<td>2.04</td>
<td>0.04±0.04</td>
<td>0</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu^-\rho^0$</td>
<td>2.1</td>
<td>8.8</td>
<td>4.30</td>
<td>0.24±0.12</td>
<td>0</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu^-K^*(892)^0$</td>
<td>19.1</td>
<td>20.9</td>
<td>3.61</td>
<td>0.37±0.14</td>
<td>0</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu^-K^*(892)^0$</td>
<td>15.8</td>
<td>18.0</td>
<td>3.42</td>
<td>0.49±0.19</td>
<td>0</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu^-\phi$</td>
<td>8.7</td>
<td>12.2</td>
<td>2.58</td>
<td>0.00±0.18</td>
<td>0</td>
</tr>
</tbody>
</table>
Distribution of obtaining the number of signal \(s \) in the null signal case

\[s = -3.21 \]

⇒ Probability 25% if \(s \) is \(<-3.21\)
Search for τ decay with Lepton and Baryon number violation process

($\tau \to \Lambda \pi, pK_s, p\gamma, p\pi^0$ and so on)

\Rightarrow Important for cosmology (Baryon Asymmetry Universe)

\Rightarrow Sensitive to new physics (SUSY etc.)

We consider two types from $\tau \to \Lambda \pi$ decay

- $B - L$ conserving mode
 $\Rightarrow \tau^- \to \bar{\Lambda}\pi^- (\bar{\Lambda} \to \bar{p}\pi^+)$

- $B - L$ violating mode
 $\Rightarrow \tau^- \to \Lambda\pi^- (\Lambda \to p\pi^-)$

We can distinguish between these two modes using a charge between two pions

- $B - L$ conserving mode
 \Rightarrow Opposite charge

- $B - L$ violating mode
 \Rightarrow Same charge
Dataset for this analysis @ 154 fb$^{-1}$

Event selection
- Λ selection using vertex informations and proton ID
- $p_{\text{miss}} > 0.4$ GeV/c within the fiducial volume
- $10.5 > E_{\text{total}}^{CM} > 5.29$ GeV
- $\cos \theta_{\text{tag-mis}}^{CM} > 0.0$
- Kaon and Proton veto against tag-side and π from $\tau \rightarrow \Lambda''\pi''$
- # of γ in signal side ≤ 1
- # of γ in tag side ≤ 2
- m_{miss}^2 vs. p_{miss} cut
 \Rightarrow See plot on the right
Require $p_{\text{miss}}^{\text{lab}} > 1.5m_{\text{miss}}^2 - 1$
After events selections
$\varepsilon = 11.8\%$ for both modes

Background:
uds: including real Λ
$\tau\tau$: fake Λ from 3-prongs decay

In signal region
— Expected background
1.7 \pm 0.8 events in both modes
— Data
1 event for $B - L$ conserving mode
0 events for $B - L$ violating mode

\[\downarrow \]
Set upper limits on branching fraction at 90\% C.L.

\[\mathcal{B}(\tau \rightarrow \bar{\Lambda}\pi^-) < 1.4 \times 10^{-7} \quad \mathcal{B}(\tau \rightarrow \Lambda\pi^-) < 7.2 \times 10^{-8} \]
(B - L conserving) \quad (B - L violating)

(PLB 632, 51 (2006))
These results are the first searches ever performed.
Recent results on Belle’s LFV search (Upper Limit on Br at 90% CL)

This year’s publications