

Joint Meeting of Pacific Region Particle Physics Communities

Search for Lepton Flavor Violation au Decay at Belle experiment

Y. Miyazaki (Nagoya university) for the Belle Collaboration

Contents

Introduction

(Motivation, Analysis method, Belle detector)

Results for LFV au decay

Summary

Introduction

• Quark mixing

- Flavor mixing in quark sector have been studied well
- Beautifully described by CKM matrix including CPV
- Neutrino mixing
 - Discovered
 - Provides hints of new physics beyond SM
- Lepton Flavor Violation (mixing) decays for charged lepton
 - Not observed yet
 - very small probability via neutrino oscillation.

 ${\cal B} \propto (\Delta m_
u^2/m_W^2)^2 \simeq 10^{-49} \,{\sim} 10^{-52}$

 \Rightarrow So, difficult to observe τ LFV at current experiment.

If we observed LFV decays in charged lepton, they would be a clear signature of New Physics.

Lepton Flavor Violation τ Decays

Many extensions of the SM predict LFV decays \Rightarrow SUSY(+Seesaw), Extra dimension etc.

– SUSY-GUT or SUSY-Seesaw model –

Charged lepton mixing would occur through the mixing of slepton mass matrix

 ${\cal B} \propto ((m_{ ilde{L}}^2)_{ij})^2$

 \Rightarrow enhanced up to the current experimental sensitivity

LFV depends on the some powers of lepton mass $(m_{\ell})^n$ $\Rightarrow \tau$ is the heaviest lepton and have strongly couplings to New Physics

Previous experimental results for LFV au decays CLEO sensitivities on \mathcal{B} <O(10⁻⁶)

$$(m_{\tilde{\ell}})_{ij}^2 = \left(egin{array}{ccc} m_{ ilde{e} ilde{\ell}}^2 & m_{ ilde{e} ilde{\mu}}^2 & m_{ ilde{e} ilde{ au}}^2 \ m_{ ilde{\mu} ilde{ au}}^2 & m_{ ilde{\mu} ilde{ au}}^2 & m_{ ilde{\mu} ilde{ au}}^2 \ m_{ ilde{ au} ilde{ au}}^2 & m_{ ilde{ au} ilde{ au}}^2 \ m_{ ilde{ au} ilde{ au}}^2 & m_{ ilde{ au} ilde{ au}}^2 \end{array}
ight)$$

Expected branching fraction for LFV τ decay

Analysis method for LFV au decay (1)

Procedure for LFV τ decay

- Select low multiplicity track events with a zero net charge
- Separate into two hemispheres using thrust axis
 - \rightarrow signal and tag
- Reduce background using PID and kinematic informations
 - lepton ID, K/π separation
 - missing momentum
 - # of γ 's etc.

Analysis method for LFV τ decay (2)

 $\begin{array}{l} \text{Signal extraction in } M_{\mathrm{inv}} \text{ and } \Delta E \text{ plane} \\ & - M_{\mathrm{inv}} \sim m_{\tau} = 1.777 \; \mathrm{GeV}/c^2 \\ & - \Delta E = E^{\mathrm{CM}} - E^{\mathrm{CM}}_{\mathrm{beam}} \sim 0 \; \mathrm{GeV} \end{array}$

Blind the signal region

 Estimate the background in signal region using sideband data

1

After open the blinded region

- counting # of events in signal region.
- apply maximum likelihood fit and extract # of events in signal region.

Set an upper limits if no excess of signal events compared expected background.

Belle Detector

Good vertex resolutions and particle ID capablilities

6

$$au
ightarrow \mu\gamma$$
 (1)

7

SM+seesaw

$au ightarrow \mu \gamma$ is the most attractive mode in new physics. e.g. MSSM + Seesaw model model $- \mathcal{B}(\tau ightarrow \mu ee) / \mathcal{B}(\tau ightarrow \mu \gamma) \sim 1/94$ mSUGRA+Seesaw $- \mathcal{B}(\tau ightarrow \mu \mu \mu) / \mathcal{B}(\tau ightarrow \mu \gamma) \sim 1/440$ SUSY+SO(10)

SUSY+Higgs
Assuming
$$|\delta_{\tau\mu}^{R}| = |\delta_{\tau\mu}^{R}| = 1$$

 $\mathcal{B}(\tau \to \mu\gamma) = 3.0 \times 10^{-6} \times \left(\frac{\tan\beta}{60}\right)^{2} \times \left(\frac{1\text{TeV}}{M_{\text{SUSY}}}\right)^{4}$
(hep-ex/0406701)

Previous analysis@ Belle $\mathcal{B}(au o \mu \gamma) < 3.1 imes 10^{-7}$ @86.3/fb

 ${\cal B}(au o \mu \gamma)$

 $< 10^{-7}$

 $< 10^{-8}$

 $< 10^{-9}$

 $\mathcal{B}(au
ightarrow 3\ell)$

 $< 10^{-7}$

 $< 10^{-10}$

 $< 10^{-10}$

$$au
ightarrow \mu\gamma$$
 (2)

 $e^+e^- \rightarrow \tau^+\tau^- \rightarrow \mu\gamma$ (signal side) \hookrightarrow 1-prong + missing (tag side) veto μ for rejecting $\mu\mu(+\gamma)$ events Data: 535/fb BG: $\tau\tau\gamma$ (ISR), $\mu\mu\gamma$ (ISR) Applying tighter cuts compared with

previous analysis

$$au
ightarrow \mu\gamma$$
 (3)

Remaining events:

54 eve.(@86/fb) \rightarrow 94 eve. (@535/fb) Efficiency

 $11\% \rightarrow 6.7\%$

Signal region

 $5\sigma \text{ box} \rightarrow 2\sigma \text{ ellipse}$

Signal extraction Unbinned maximum likelihoods method:

$$\mathcal{L} = \frac{\exp - (s+b)}{N!} \prod_{i=1}^{N} (sS_i + bB_i)$$

s = -3.9 events and = 13.9 events (allow negative s and its prob. $\sim 25\%$) $\Rightarrow s_{90\% CL} = 2.0$ events $\mathcal{B}(\tau \rightarrow \mu \gamma) < 4.5 \times 10^{-8}$ @ 90%C.L. (Preliminary hep-ex/0609049)

$$au
ightarrow \mu\gamma$$
 (4)

$$au o e \gamma$$

4

3

2

0

11

Same methods as $au
ightarrow \mu \gamma$ analysis s = -0.14 events and = 5.14 events (allow negative s and its prob. $\sim 48\%$) $\mathcal{B}(au o e \gamma) < 1.2 imes 10^{-7}$ @ 90%C.L. (Preliminary hep-ex/0609049) \Rightarrow Improve a factor of 3.3 compared previous results (Previous : $\mathcal{B}(au o e\gamma) < 3.9 imes 10^{-7}$ @ 86/fb (PLB 613, 20(2006)) # of events

$$au
ightarrow \ell\eta$$
 (1)

LFV in Higgs mediated model is sensitive to $\mu\eta$ and $\mu\mu\mu$ decay $\mathcal{B}(\tau \to \mu\eta) = 8.4 \times 10^{-7} \left(\frac{\tan\beta}{60}\right)^6 \left(\frac{100 \text{GeV}/c^2}{m_A}\right)^4$ (M. Sher, PRD 66, 057301 (2002))

Comparison with $\mu\mu\mu$

- enhanced as $(m_s/m_\mu)^2$
- $\operatorname{color} (\times 3)$
- larger phase space than $\mu\mu\mu$ decay

$$\Rightarrow au o \mu\eta$$
 is improved by factor of 8.4 compared $au o \mu\mu\mu$ decay.

$${\cal B}(au o \mu \eta): {\cal B}(au o \mu \gamma): {\cal B}(au o 3 \mu) = 8.4: 1.5: 1$$

Previous analysis@ Belle $\mathcal{B}(au o \mu\eta) < 1.5 imes 10^{-7}$ @154/fb (PLB B622, 218(2005))

$$au
ightarrow \ell\eta$$
 (2)

Analysis Data: 401/fb Decay mode: $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$ BG: $\tau \tau$ and $q \bar{q}$ events

Cut: Similar cuts as previous analysis, but applying tighter cuts For example, BG rejection by m_{miss}^2 vs p_{miss} Separate two cut using tag informations Hadronic tag \Rightarrow one ν Leptonic tag \Rightarrow two ν s \Rightarrow Effective cuts to reduce BG

$$au
ightarrow \ell\eta$$
 (3)

Signal region: 90% ellipse: (a region which contains 90% # of signal MC events) Signal extraction: Counting method

mode	$\eta o \gamma \gamma$	$\eta o \pi^+ \pi^- \pi^0$			
Eff.	6.4%	6.8%			
Expected $\#$	0.40 ± 0.20	0.24 ± 0.24			
Obs. #	0	0			
UL _{90%C.L.}	$< 1.2 \times 10^{-7}$	$< 2.0 \times 10^{-7}$			
$\Rightarrow \mathcal{B}(au o \mu \eta) < 6.5 imes 10^{-8}$					

(Preliminary hep-ex/0609013)

Improve a factor of 2.3 compared with previous analysis

$$au
ightarrow \ell\eta$$
 (4)

 $au
ightarrow \ell K^0_S$ (where $K^0_S
ightarrow \pi^+\pi^-)$ Dataset for this analysis @ 281 fb $^{-1}$

Event selection

- $\bullet~p_{
 m miss} > 0.4~{
 m GeV/c}$ within the fiducial volume
- $\label{eq:constraint} \ \bullet \ \ 10 > E^{CM}_{total} > 5.29 {\rm GeV} \\ \ \bullet \ \ \cos \theta^{CM}_{tag-miss} > 0.0$
- # of γ in signal side < 1
- # of γ in tag side ≤ 2

ullet cos $heta_{\ell K^0_S}$ vs. $p_{\ell K^0_S}$ cut \Rightarrow See plot on the right $\cos heta_{\ell K^0_S} <$ 0.14log $(p_{\ell K^0_S} - 2.7) +$ 0.7 cut Eff. of $\cos \theta_{\ell K^0_S}$ vs. $p_{\ell K^0_S}$ cut for each MC Signal 99% au au 0.7%, uds 16%

$$au
ightarrow \ell K^0_S$$
 (2)

$\tau \rightarrow \ell h h'$ and $\ell + \text{Vector meson}$ (2)

Dataset for this analysis @ 158 fb $^{-1}$ Signal region : 90% reactangle $\mathcal{B}(au
ightarrow \ell h h') < (1.8 \sim 8.0) imes 10^{-7}$ $\mathcal{B}(\tau \rightarrow \ell V^0) < (2.0 \sim 7.7) \times 10^{-7}$ (PLB640, 138 (2006))

Background : $\tau \tau$, uds and 2photon

 $\rightarrow e^{-} \pi^{+} K^{-}$

 $\rightarrow \mu^{-} \pi^{+} \mathbf{K}^{-}$

0.05 0 0.05

0.2

() -0.2
() -0.4

0.2

-0.2

-0.4

* ⊲

 $\tau^{-} \rightarrow e^{-} K^{*}(892)^{0}$

 $\tau \rightarrow \mu \rho^0$

 $\tau^{-} \rightarrow \mu^{-} \mathbf{K}^{*} (892)^{0}$

Summary

We have searched for a lepton flavor violating au decay at Belle. No observation and sensitivity to lepton flavor violating au decay branching fraction is approaching $10^{-7} \sim 10^{-8}$

- \Rightarrow Improvement of 1–2 orders over CLEO
- \Rightarrow Reached the level of some new physics
- \Rightarrow Provide constraints on the new physics models

B-factory is a good au factory!

Thus, in additional to new physics search in B decay, we provide sensitivities to new physics via lepton flavor violation and precision measurements also in τ decay

- High luminosity - Asymmetric energy collider e^- 8 GeV/ e^+ 3.5 GeV $\sqrt{s} = 10.58$ GeV (Υ (4s)) Integrated lum. > 650/fb @ 2006/10

Upper limits for $au o \ell hh$ and ℓV^0

Mode	$\Delta \epsilon /$	ϵ (%)	Detection	Expected	Observed	Upper limit on
	LFV	Total	efficiency ϵ (%)	background	events	BF (90% CL)
$\tau^- \rightarrow e^- \pi^+ \pi^-$	5.3	7.5	5.30	2.62±1.07	6	7.3×10 ⁻⁷
$\tau^- ightarrow e^+ \pi^- \pi^-$	2.3	5.8	5.14	0.00 ± 0.26	1	2.0×10^{-7}
$ au^- ightarrow \mu^- \pi^+ \pi^-$	2.1	8.8	4.37	0.76±0.26	2	4.8×10^{-7}
$\tau^- \to \mu^+ \pi^- \pi^-$	7.7	11.5	4.44	0.73±0.30	1	3.4×10^{-7}
$\tau^- ightarrow e^- \pi^+ K^-$	20.5	21.2	3.99	0.91 ± 0.25	3	7.2×10^{-7}
$\tau^- ightarrow e^- \pi^- K^+$	17.4	18.2	4.11	1.27±0.41	0	1.6×10^{-7}
$\tau^- \rightarrow e^+ \pi^- K^-$	12.8	13.9	4.03	0.74±0.22	0	1.9×10^{-7}
$\tau^- \to e^- K^- K^+$	21.9	22.5	3.12	0.34±0.20	0	3.0×10^{-7}
$\tau^- ightarrow e^+ K^- K^-$	5.4	7.6	3.06	0.09 ± 0.07	0	3.1×10^{-7}
$ au^- ightarrow \mu^- \pi^+ K^-$	15.8	18.0	3.43	2.35±0.44	1	2.7×10^{-7}
$\tau^- ightarrow \mu^- \pi^- K^+$	19.1	20.9	3.32	1.85 ± 0.32	3	7.3×10^{-7}
$\tau^- \to \mu^+ \pi^- K^-$	25.4	26.8	3.53	2.53 ± 0.38	1	2.9×10^{-7}
$\tau^- \to \mu^- K^- K^+$	8.7	12.2	2.76	0.48 ± 0.19	2	8.0×10^{-7}
$\tau^- ightarrow \mu^+ K^- K^-$	38.2	39.2	2.70	0.09 ± 0.06	٥	4.4×10^{-7}
$\tau^- \to e^- \rho^0$	5.3	7.5	5.03	2.55 ± 1.04	5	6.5×10^{-7}
$\tau^- \rightarrow e^- K^* (892)^0$	17.4	18.2	4.12	0.76±0.34	0	3.0×10^{-7}
$\tau^- \rightarrow e^- \bar{K}^* (892)^{q}$	20.5	21.2	3.68	0.16 ± 0.10	0	4.0×10^{-7}
$\tau^- \to e^- \phi$	21.9	22.5	2.94	0.04±0.04	0	7.3×10^{-7}
$ au^- ightarrow \mu^- ho^0$	2.1	8.8	4.40	0.26 ± 0.12	O	2.0×10^{-7}
$\tau^- \to \mu^- K^* (892)^0$	19.1	20.9	3.61	0.37±0.14	0	3.9×10^{-7}
$\tau^- \rightarrow \mu^- \bar{K}^* (892)^0$	15.8	18.0	3.42	0.49 ± 0.19	0	4.0×10^{-7}
$\tau^- \to \mu^- \phi$	8.7	12.2	2.68	$0.00 {\pm} 0.18$	0	7.7×10^{-7}

Distribution for the number of signal for $au o \mu \gamma$

Distribution of obtaining the number of signal *s* in the null signal case

s = -3.21

 \Rightarrow Probability 25% if s is <-3.21

$au ightarrow ar{\Lambda} \pi$ and $\Lambda \pi$ (1)

Search for $oldsymbol{ au}$ decay with Lepton and Baryon number violation process

 $(au
ightarrow \Lambda \pi, p K_S$, $p \gamma$, $p \pi^0$ and so on)

⇒ Important for cosmology (Baryon Asymmetry Universe)

 \Rightarrow Sensitive to new physics (SUSY etc.)

We consider two types from $au o \Lambda \pi$ decay

• B - L conserving mode $\Rightarrow \tau^- \rightarrow \bar{\Lambda}\pi^- (\bar{\Lambda} \rightarrow \bar{p}\pi^+)$ • B - L violating mode $\Rightarrow \tau^- \rightarrow \Lambda\pi^- (\Lambda \rightarrow p\pi^-)$

We can distinguish between these two modes using a charge between two pions

• B - L conserving mode

 \Rightarrow Opposite charge

- ullet B L violating mode
- \Rightarrow Same charge

$$au
ightarrow ar{\Lambda} \pi$$
 and $\Lambda \pi$ (2)

Dataset for this analysis @ 154 fb⁻¹

Event selection

- $\bullet~\Lambda$ selection using vertex informations and proton ID
- $ullet p_{
 m miss} > 0.4 \; {
 m GeV/c}$ within the fiducial volume
- \bullet 10.5 > E_{total}^{CM} > 5.29GeV
- $\cos \theta_{tag-mis}^{CM} > 0.0$
- Kaon and Proton veto against tag-side and π from $au o \Lambda'' \pi''$
- ullet # of $oldsymbol{\gamma}$ in signal side ≤ 1
- # of γ in tag side ≤ 2 • m_{miss}^2 vs. p_{miss} cut \Rightarrow See plot on the right Require $p_{miss}^{lab} > 1.5m_{miss}^2 - 1$

$$au
ightarrow ar{\Lambda} \pi$$
 and $\Lambda \pi$ (3)

After events selections $\ensuremath{\varepsilon} = 11.8\%$ for both modes

Background: uds: including real Λ au au: fake Λ from 3-prongs decay

In signal region

Expected background

1.7 ± 0.8 events in both modes

Data

1 event for *B* − *L* conserving mode
0 events for *B* − *L* violating mode

↓

Set upper limits on branching

fraction at 90% C.L.

These results are the first searches ever performed.

