Inclusive B decays including Kaons at BABAR

Fred Blanc University of Colorado for the BABAR Collaboration

Joint Meeting of Pacific Region Particle Physics Communities Honolulu, Hawaii October 29 - November 03, 2006

Introduction

- Analysis of the (semi-)inclusive decays:
 - I. $B^+ \rightarrow K^{*+}h^+h^-$ (final results)
 - Measure charge asymmetries A_{ch} for significant signals
 - 2. $B \rightarrow K^+X$ and $B \rightarrow K^0X$ (preliminary results)
- Inclusive decays \Rightarrow simpler theoretical interpretation
- These decays are dominated by $b \rightarrow s$ penguin loops
- Sensitive to physics beyond the Standard Model (SM) see e.g. Grossman and Worah, Phys. Lett. B395, 241 (1997)

PEP-II & BABAR detector

Common analysis technique

- Event selection with loose cuts \Rightarrow high efficiency
- Unbinned extended Maximum Likelihood (ML) Fit to extract signal yields, A_{ch} (+some PDF parameters)
- Background-rejection variables used in ML Fit:
 - kinematic:
 - $m_{ES} = \sqrt{S/4} |p_B|^2$ ($\sigma(m_{ES}) \approx 2.5 3.0 \text{MeV/c}^2$)
 - $\Delta E = E_B^* \sqrt{s/2}$ ($\sigma(\Delta E) \approx 10-50 \text{MeV}$)
 - $m(K^*) = K^{*+}$ reconstructed mass (for $K^{*+}h^+h^-$ analysis)
 - Event topology:
 - BB events are isotropic, qq-continuum events are jet-like
 ⇒ multiple variables combined into a Fisher discriminant

$B^+ \rightarrow K^{*+}h^+h^-$ (h=K, π)

- Consider 3-body decays:
 - $B^+ \rightarrow \overline{K^{*+}} \overline{K^+} \overline{K^-}$ b→s & b→u
 - $B^+ \rightarrow K^{*+} \pi^+ K^-$
 - $B^+ \rightarrow K^{*+}K^+\pi^-$
- b→d & b→u • SM suppressed ($\Delta S=2$) \Rightarrow sensitive to physics beyond SM
 - $B^+ \rightarrow K^{*+} \pi^+ \pi^-$

• SM expectations: $\mathcal{B}(\mathsf{B}^+\to\mathsf{K}^{*+}\pi^+\pi^-)>\mathcal{B}(\mathsf{B}^+\to\mathsf{K}^{*+}\mathsf{K}^+\mathsf{K}^-)|_{\mathsf{B}^+}$ $> \mathcal{B}(B^+ \rightarrow K^{*+}\pi^+K^-) > \mathcal{B}(B^+ \rightarrow K^{*+}K^+\pi^-)$

$B^+ \rightarrow K^{*+}h^+h^-$ event selection

- Reconstruct K^{*+} as $K^{*+} \rightarrow K^0_S \pi^+ (K^0_S \rightarrow \pi^+ \pi^-)$
- $B^+ \rightarrow K^{*+}h^+h^-$ includes $(K^{*+}h^-)$ and (h^+h^-) resonances: e.g. $\phi(\rightarrow K^+K^-)$, $\rho^0(\rightarrow \pi^+\pi^-)$, $K^*(K^+\pi^-)$ => semi-inclusive measurement
- $B \rightarrow$ charm decays rejected with J/ Ψ , D veto
- 29% of events have multiple candidates
 - select candidate with smallest B vertex χ^2
 - correct in 70% of cases
- Signal efficiency weighted as function of position of K^{*+}h⁺h⁻ event in Dalitz plane

$B^+ \rightarrow K^{*+}h^+h^-$: fit results

m_{ES} projection plots

$B^+ \rightarrow K^{*+}h^+h^-$: crosschecks

- Generate and fit simulated data samples with expected signal and background contributions:
 - bias = N_{signal}(fitted) N_{signal}(generated) used as correction to measured signal yield
 - mode-dependent bias = \sim I-38 events
 - assign I/2 of bias as systematic uncertainty
- A_{ch} for background compatible with zero

$B^+ \rightarrow K^{*+}h^+h^-$: systematics

Source	σ_{syst}	
Reconstruction efficiency (MC) Tracking K ⁰ reconstruction Nb BB pairs	5.3-9.4% 2.4% 1.2% 1.1%	
Total multiplicative errors	6.0-9.8%	
Background to K ^{*+} (892) from higher resonances B background Fit bias Signal mis-ID (from K/π mis-ID) PDF parametrization	4.5-25.6 events 1.3-37.9 events 0.3-18.7 events 0.0-15.5 events 3.0-19.4 events	
Total additive errors	16.5 - 51.4 events	
Total systematic error on Branching Fraction	(2.0-8.1)×10 ⁻⁶	

$B^+ \rightarrow K^{*+}h^+h^-$ results

Mode	Signal yield	Efficiency	Branching Fraction [10 ⁻⁶]	Charge asym.
B+→K*+K+K-	288±26	3.4%	36.2 ±3.3 ±3.6	+0.11±0.08±0.03
B⁺→K [*] +π⁺K⁻	20.1±24.7	3.5%	2.5±3.1±5.3 < .8 @90% C.L.	N/A
B ⁺ →K ^{*+} K ⁺ π ⁻ (SM-suppressed)	9.7±17.1	3.5%	I.2±2.I±2.0 <6.I @90% C.L.	N/A
B⁺→K ^{*+} π ⁺ π ⁻	583±46	3.3%	75.3 ±6.0 ±8.1	+0.07±0.07±0.04

- First observation of $B^+ \rightarrow K^{*+}K^+K^-$ and $B^+ \rightarrow K^{*+}\pi^+\pi^-$
- Hierarchy of result compatible with SM expectations
- A_{ch} not significant for observed decays

Inclusive $B \rightarrow KX$ decays

- Motivation:
 - search for $B \rightarrow KX$ as signature of $b \rightarrow s$ transitions
 - sensitive to physics beyond SM: BF(b→s) = I-2% (SM) → up to 10% is certain models Bigi et al. Phys. Lett. B323, 408 (1994) Gosky et al. Phys. Rev. D 64, 054006 (2001)
 - provide input to understanding of $b \rightarrow s$ decays

Buchalla et al., JHEP 0509, 074 (2005) Hiller and Krüger, Phys. Rev. D 69, 074020 (2004)

20000

• Analysis overview:

[first suggested by Browder et al., Phys. Rev. D 57, 6829 (1998)]

- reject qq-continuum by selecting events containing fully reconstructed B (B_{reco}) recoiling against a signal B (B_{sig})
- Separate $b \rightarrow c$ charm background with $p^*(K)$ in B_{sig} rest frame

$B \rightarrow KX$ analysis method

• Select event with a fully reconstructed B_{reco}

• $B_{reco} \rightarrow D^{(*)} nK^{\pm} m\pi^{\pm} qK_{S} r\pi^{0} (n+m=1,3,5;q,r<3)$

• ML fit to $m_{ES}(B_{reco})$, Fisher(B_{reco}), and $p^*(K) > 2.34 GeV$

 $\Upsilon(4S)$ and B_{reco} 4-mom. \Rightarrow B_{sig} 4-mom. \Rightarrow kaon 3-mom. $p^*(K)$ in B_{sig} CM

• 3 components in ML fit: $B \rightarrow KX$, $b \rightarrow c$, qq

• Extract signal yield at $p^*(K)>2.34GeV \Rightarrow partial BF$

p*(K+) spectrum (MC data)

- MC data
- Equivalent luminosity: ~1.1ab⁻¹
- qq continuum rejected with cut on m_{ES} and Fisher discriminant
- Main experimental difficulty: understand b→c p^{*}(K) spectrum

$B \rightarrow KX$: 2-step ML Fit

I. ML Fit 1: fit $p^*(K) > I.8 GeV$ to determine $p^*(K)$ spectrum for $b \rightarrow c$ background

2. ML Fit 2: fit signal range 2.34<p*(K)<2.8GeV
Fix b→c yield and shape to results of Fit 1

$B \rightarrow KX$: Fit Results

Projection plots made with cut on signal likelihood, retaining ~85% (75%) of the $B \rightarrow K^+X$ ($B \rightarrow K_SX$) signal

B→K⁺X

$B \rightarrow KX$: Crosschecks and Systematic uncertainties

• Crosschecks:

- Bias due to fit procedure tested on simulated data. Fit bias used as correction to fit result.
- Data/MC agreement checked with inclusive $B \rightarrow \pi X$ control sample
- Systematics:

Source	B→K⁺X	B→K⁰X
Reconstruction efficiency (MC) Tracking efficiency K _S →π ⁺ π ⁻ reconstruction efficiency K ⁺ particle identification B _{reco} counting	9.4% 0.5% 2.4% 5.0%	16.1% 1.0% 2.1% 5.0%
Total multiplicative errors	١0.9%	17.0%
Fixed b→c yield PDF parametrization Fit bias correction	^{+6.0} -5.6 events ^{+2.6} -2.4 events I.2 events	^{+4.1} -3.5 events ^{+3.9} -0.8 events 1.4 events
Total additive errors	+6.6 _{-6.2} events	^{+5.8} -3.9 events
Total systematic error on Branching Fraction	(⁺³¹ / ₋₃₀)×10 ⁻⁶	(⁺⁵⁵)×10 ⁻⁶

$B \rightarrow KX: Partial BF (P^{*}(K)>2.34GeV)$

Mode	Signal yield	Efficiency	Partial BF [10 ⁻⁶]	significance
B→K⁺X	58.4 ^{+10.5} -9.7	16.1%	196 ⁺³⁷ ₋₃₄ ⁺³¹ ₋₃₀	6.0 σ
B→K⁰X	21.1+6.5 -5.7	6.7%	154 ^{+55 +55} (<266)	3 .Ισ

Remarks:

BABAR PRELIMINARY

- yield normalized to number of B_{reco} determined from a fit to m_{ES} and Fisher: $N(B_{reco}) = (1.78 \pm 0.09) \times 10^6$
- "B-recoil" method is efficient for $B \rightarrow K^+X$ (and $B \rightarrow K^0X$)
 - Larger integrated luminosity will be needed to apply this method to inclusive B decays to resonances

$B \rightarrow KX$: Interpretation

- Known charmless 2-body decays account for ~60% of partial branching fractions (p*>2.34GeV)
 - dominated by $B^+ \rightarrow \eta' K^+$ and $B^0 \rightarrow \eta' K^0$
- Extrapolation to full p* range:
 - Theoretically uncertain:
 - spectrum at high p^* expected similar to that of $b \rightarrow s\gamma$
 - ...but non-perturbative QCD effects at low energy are uncertain
 - May have to rely on JETSET to make statement on $\mathscr{B}(b \rightarrow sg^*)$
- Sensitive to charming penguins [Soni and Zupan, hep-ph/0510325]

Conclusion

Presented (semi-)inclusive measurements of B decays including kaons:

- I. First observation of $B^+ \rightarrow K^{*+}K^+K^-$ and $B^+ \rightarrow K^{*+}\pi^+\pi^-$
 - K*h⁺h⁻ results published in Phys.Rev. D74, 051104 (2006)
- 2. B→KX branching fractions are compatible with SM expectations
 - preliminary result: hep-ex/0607053