Narrow L=1 States Properties of Excited B-Mesons B^{**} and B Masses, Production Rates and Decay Branching Fractions And First Measurement of the B⁰ Semileptonic Branching Ratio to an Orbitally Excited D_{s}^{**} state: $Br(B^{0}_{s} \rightarrow D_{s1}^{-}(2536)\mu^{+}\nu X)$

Mark Williams on behalf the DØ Collaboration

Contents

- Theory of B meson spectroscopy
- **B**** System (bu):
 - Event Selection
 - Fitting and Mass Distribution
 - Interpretation of Results
 - Detection Efficiencies and Production Rates
- \mathbf{B}_{s}^{**} System (bs):
 - Event Selection
 - Fitting and Mass Distribution
 - Interpretation of Results
- $B_{s}^{0} \rightarrow D_{s1}^{-}(2536)\mu^{+}\nu X:$
 - Theory and Motivation
 - Method, Event Selection and Mass Fits
 - Comparison with Theory and Conclusions

Part A: The B** System

- Masses, Widths, Branching Fractions
- Production Rates

DPF 2006 October 30th 2006 Oahu, Hawaii

b-Meson Spectroscopy – Theory (B^{} and B_s^{**})**

• The (bd) and (bs) quark systems are well modeled by the Heavy-Quark limit, since M(b) >> M(u,d,s).

• Theory predicts four doubly-excited states, in addition to the well-measured ground states B^+ , B_s^+ and singly-excited states B^{+*} , B_s^{+*} .

• The two L=1, $j_q = \frac{1}{2}$ states are predicted by theory to be very wide ($\Gamma > 100 \text{ MeV/c}^2$) and so cannot be distinguished from the background (S-wave decay).

• Studies are therefore limited to the observation and measurement of the narrow states $B_{1(s)}$ and $B_{2(s)}^{*}$, collectively denoted by $B_{J(s)}$.

DPF 2006 October 30th 2006 Oahu, Hawaii

b-Meson Spectroscopy – Theory (B)**

• The two narrow B^{**} states decay by D-wave π release.

- **B**₁ decays 100% to **B**^{+*} (Parity/angular momentum conservation).
- B_2^* decays ~50% to B^{+*} and ~50% to B^+ (Theory).
- B^{+*} then decays ~100% to the ground state B⁺, emitting a photon γ of energy 45.78 ±0.35 MeV (Well-measured).

Also neutral pion modes ⇒ We need to consider ispspin symmetry.

Charge conjugated states are implied.

DPF 2006 October 30th 2006 Oahu, Hawaii

B** Reconstruction and Event Selection

B_J mesons reconstructed through decays:

- $B_J \rightarrow B^{+(*)} \pi^-$
- $B^{*+} \rightarrow B^+ \gamma$ (100%) (45.78±0.35 MeV photon undetected)

B⁺ reconstructed from final state $K^+\mu^+\mu^-$:

Reconstruction of B⁺ Candidates

B⁺ mesons are reconstructed in the final state:

 $B^+ \rightarrow J/\psi K^+$

•Selection: A combined-tag cut on the following variables:

Impact parameter significance of B⁺
Impact parameter significance of K⁺
Transverse momentum of K⁺
Minimal transverse momentum of the two muons from J/ψ decay.

•Decay length significance of B⁺

Fitting with Gaussian (Signal) + second-order polynomial (Background):

- Reconstructed Mass:
- Mass Resolution:
- Number of Events:

 $5273 \pm 0.5 \text{ MeV/c}^{2}$ $42.5 \pm 0.5 \text{ MeV/c}^{2}$ $16,219 \pm 180$

$\mathbf{B}_{\mathbf{J}}$ Reconstruction and Selection: $\mathbf{B}_{\mathbf{J}}$ events

For each B⁺ meson reconstructed, an additional track (π) is required, which must pass the following selection criteria:

- \geq 2 hits in silicon tracker
- \geq 2 hits in central fiber tracker
- Transverse momentum $\geq 0.75 \text{ GeV/c}$
- Correct charge correlation (i.e. $B^+\pi^-$ or $B^-\pi^+$ combinations only)
- $2\sigma B^+$ mass window: $5.19 \le M(B^+) \le 5.36 \text{ GeV/c}^2$
- $S_{PV} \leq \sqrt{6}$ (Impact parameter significance)

For each track in an event satisfying the above selections, the mass difference $\Delta M = M(B^+\pi^-) - M(B^+)$ is computed. The distribution of this variable can then be interpreted in terms of the B^{**} transitions.

DPF 2006 October 30th 2006 Oahu, Hawaii

B_J Mass Distribution: Fitting

- The signal is fitted by three peaks, each a convolution of a relativistic Breit-Wigner with a double-gaussian mass resolution function.
- Free Signal Parameters:
- $\mathbf{f}_2 = \mathbf{Br}(\mathbf{B}_2^* \to \mathbf{B}^*\pi) / \mathbf{Br}(\mathbf{B}_2^* \to \mathbf{B}^{(*)}\pi)$
- $\mathbf{f}_1 = \mathbf{Br}(\mathbf{B}_1^* \to \mathbf{B}^*\pi) / \mathbf{Br}(\mathbf{B}_J \to \mathbf{B}^{(*)}\pi)$
- N(B**)
- **M**(**B**₁)

•
$$\Delta \mathbf{M}_{21} = \mathbf{M}(\mathbf{B}_2^*) - \mathbf{M}(\mathbf{B}_1)$$

• $\Gamma(\mathbf{B}^{**}) \equiv \Gamma(\mathbf{B}_2^{*}) = \Gamma(\mathbf{B}_1)$

DØ Runll Preliminary 240 Vumber of Events 1 fb⁻¹ 220 180 160 14ſ 120 100 80 60 20 0.35 0.4 0.45 0.5 0.55 $M(B\pi) - M(B)$ (GeV/c²)

• The background is fitted by a fourth-order polynomial function.

B_J Mass Distribution: Interpretation

DPF 2006 October 30th 2006 Oahu, Hawaii

B_J Mass Distribution: Interpretation

DPF 2006 October 30th 2006 Oahu, Hawaii

B_J Mass Distribution: Interpretation

Single peak for B₁ decays, with 45.78 MeV missing energy. Direct decay forbidden by conservation laws.

DPF 2006 October 30th 2006 Oahu, Hawaii

B_J Mass Distribution: Final Fit Results

No B^{**} contribution: χ² = 142 (increase of 79 ⇒ ~7σ statistical significance).
Single B^{**} peak: χ² = 82 (increase of 20).

DPF 2006 October 30th 2006 Oahu, Hawaii

B_J Mass Distribution: Final Results

• Detection efficiencies are energy dependent (P_t selection). Correcting for this effect leads to an upward shift in the fractions f_1 and f_2 .

• In addition, masses are corrected to account for the DØ momentum scale uncertainty. (Scaled in proportion to $M(B^+)_{PDG}$ - $M(B^+)_{D0}$, with 100% systematic error assigned to this correction).

- With these shifts included, and systematic errors taken into account:
 - $M(B_1) = 5720.8 \pm 2.5 \text{ (stat)} \pm 5.3 \text{ (syst)} \text{ MeV/c}^2$
 - $M(B_2^*) M(B_1) = 25.2 \pm 3.0 \text{ (stat)} \pm 1.1 \text{ (syst)} MeV/c^2$
 - $\Gamma(B_1) = \Gamma(B_2) = 6.6 \pm 5.3 \text{ (stat)} \pm 4.2 \text{ (syst) } \text{MeV/c}^2$
- The Branching ratio of B₂^{*} to the excited state B^{*} was measured as:
 - $Br(B_2^* \to B^*\pi) / Br(B_2^* \to B^{(*)}\pi) = 0.513 \pm 0.092 \text{ (stat)} \pm 0.115 \text{ (syst)}$
- The fraction of the B_J sample in the state B_1 was measured as:
 - $Br(B_1^* \to B^*\pi) / Br(B_J \to B^{(*)}\pi) = 0.545 \pm 0.064 \text{ (stat)} \pm 0.071 \text{ (syst)}$

B_J Analysis: Comparison with CDF

CDF (370 pb⁻¹)

• CDF make no measurement of branching fractions or production rate.

DØ (1 fb⁻¹)

	CDF	DØ
$\mathbf{M}(\mathbf{B}_{1}) \ (\mathbf{MeV/c^{2}})$	$5734 \pm 3 \pm 2$	$5720.8 \pm 2.5 \pm 5.3$
$M(B_2^*) - M(B_1) (MeV/c^2)$	$4 \pm 5 \pm 1$	$25.2 \pm 3 \pm 1.1$
Γ (MeV/c ²)	16 ± 6 (fixed)	$6.6 \pm 5.3 \pm 4.2$

DPF 2006 October 30th 2006 Oahu, Hawaii

Mark Williams

NCAST

B^{**} Relative Production Rate (1)

From the number of B_J and B^+ events, it is possible to calculate a production rate of the B_J meson relative to the B^+ . Efficiencies of detecting each of the three decays were calculated from Monte Carlo simulation:

•
$$\eta(B_1 \rightarrow B^{+*}\pi^-)/\eta(B^+) = 28.2 \pm 0.8 \%$$

•
$$\eta(B_2 \rightarrow B^{+*}\pi^-)/\eta(B^+) = 30.5 \pm 0.8 \%$$

•
$$\eta(B_2 \rightarrow B^+\pi^-)/\eta(B^+) = 35.5 \pm 0.8 \%$$

The MC was reweighted to make the B⁺ transverse momentum match that in data, and thus avoid bias from the Pt cuts.

The numbers $N(B^{**})$, $N(B^{+})$, f_1 and f_2 are then used to calculate production rates:

•
$$R(b \rightarrow B_1 \rightarrow B^{*+}\pi^-) / R(b \rightarrow B^+) = 6.3 \pm 1.3 \%$$

•
$$R(b \rightarrow B_2^* \rightarrow B^{*+}\pi^-) / R(b \rightarrow B^+) = 2.5 \pm 0.7 \%$$

•
$$R(b \rightarrow B_2^* \rightarrow B^+\pi^-) / R(b \rightarrow B^+) = 2.2 \pm 0.6 \%$$

• Combined Rate: $R(b \rightarrow B_{J} \rightarrow B^{(*)+}\pi^{-}) / R(b \rightarrow B^{+}) = 11.0 \pm 1.6 \%$

B^{**} Relative Production Rate (2)

Including $B^{**} \rightarrow B^0 \pi^0$ decays, a factor 3/2 is included (Isospin symmetry)

There are also systematic errors:

Source	Systematic Error
N(B**) Uncertainty	2.3%
N(B+) Uncertainty	0.1%
Reweighting Error	0.7%
Uncertainty in Resolution in MC	1.5%
Pion Reconstruction Efficiency Uncertainty	0.4%
Total	2.8%

The final value for the relative production rates of $\mathbf{B}_{\mathbf{J}}$ versus \mathbf{B}^{+} is then:

• $R(b \rightarrow B_{J} \rightarrow B^{(*)}\pi) / R(b \rightarrow B^{+}) = 16.5 \pm 2.4 \text{ (stat)} \pm 2.8 \text{ (syst)}\%$

DPF 2006 October 30th 2006 Oahu, Hawaii

Part B: The B^{**} **System**

• Masses, Widths, Branching Fractions

DPF 2006 October 30th 2006 Oahu, Hawaii

B_s^{**} Reconstruction and Selection

- Same four-level structure as **B**^{**} system.
- Pion decay prohibited, so B_s^{**} de-excite to $B^{+(*)}$ through kaon decay.
- Two L=0, $j_q = \frac{1}{2}$ states decay through S-wave so cannot be observed currently.

Selection: Same as B^{**} except...

- Additional track is assigned the mass of a kaon, not a pion.
- Transverse momentum \geq 0.60 GeV/c (0.75 GeV/c for the B_J analysis)

Mass Difference $\Delta M = M(B^+K^-) - M(B^+) - M(K^-)$ is then plotted to look for B_s^{**} transitions.

B_s^{**} Mass Distribution: Final Fit

Single peak observed. Fit is Gaussian (Signal) + polynomial (Background)

Without the B_{sJ} signal contribution: χ^2 increases by ~36 (>5 σ statistical significance).

DPF 2006 October 30th 2006 Oahu, Hawaii

B_{sJ} Mass Distribution: Interpretation

Only one peak is observed in the B_s^{**} mass distribution. For the B^{**} system there were three peaks corresponding to:

- $B_1 \rightarrow B^{+*}\pi^ M(B\pi) M(B) = 395.5 \text{ MeV/c}^2$
- $B_2^* \to B^{+*}\pi^-$ 420.8 MeV/c²
- $B_2^* \to B^+ \pi^-$ 466.6 MeV/c²

The observed peak in the B⁺K⁻ mass distribution is interpreted as the decay:

• $B_{s2}^* \rightarrow B^+K^-$ M(BK) – M(B) = 66.4 MeV/c²

Why don't we observe the other two decays?

Why don't we see $B_{s2}^* \rightarrow B^{+*}K^-$ decay?

• We observe the decay to the ground state $B_{s2}^* \rightarrow B^+K^-$. According to theory, B_{s2}^* is also allowed to decay to B^{+*} with equal probability.

• This decay would lead to a second peak observed at $\Delta M \approx 66.4 - 45.78 \approx 20$ MeV/c².

Interpretation A: This small mass difference leads to kinematic suppression (Plus P_t selection) - resulting in the decay rate for B_{s2}^{*} → B^{+*}K⁻ being too small to observe.
 Interpretation B: The background variations hide the B_{s2}^{*} → B^{*+}K⁻ signal – need more background studies.

Why don't we see the B_{s1} state?

- In the B_d^{**} system: $M(B_2^{*}) M(B_1) = 25.2 \text{ MeV/c}^2$.
- Assuming the same mass splitting in the B_s^{**} system: $M(B_{s1}) \approx 5813 \text{ MeV/c}^2$.
- In this case, the decay is kinematically forbidden since $M(B_{s1}) < M(B^{*+}) + M(K^{+}) \approx$ 5819 MeV/c². This can explain the absence of the B_{s1} meson in the ΔM distribution.

B_s^{**} - **Do CDF and DØ agree this time?**

(MeV/c ²)	CDF	DØ
M (B _{s1})	$5829.4 \pm 0.2 \pm 0.6$	Not Observed
M(B _{s2} *)	$5839.6 \pm 0.4 \pm 0.5$	$5839.1 \pm 1.4 \pm 1.5$
$M(B_{s2}^{*}) - M(B_{s1})$	$10.20 \pm 0.44 \pm 0.35$	N/A

DPF 2006 October 30th 2006 Oahu, Hawaii

Mark Williams

NCAST

Part C: First Measurement of the B⁰_s Semileptonic Branching Ratio to an Orbitally Excited D_s^{**} state: $Br(B^0_s \rightarrow D^-_{s1}(2536)\mu^+\nu X)$

DPF 2006 October 30th 2006 Oahu, Hawaii

B_s Decay through a **D**_s^{**} State: Theory

$$\begin{split} \mathbf{B}_{s} &\to \mathbf{D}_{s1}^{+}(2536)\mu^{-}\nu\\ \mathbf{D}_{s1}^{+} &\to \mathbf{D}^{+*}\mathbf{K}_{s}(\pi^{+}\pi^{-})\\ \mathbf{D}^{+*} &\to \mathbf{D}^{0}\pi^{+}\\ \mathbf{D}^{0} &\to \mathbf{K}\pi \end{split}$$

Important for testing HQET since the semileptonic decay to the heavy excited state is in phase space close to zero recoil, where most of the correction occurs.

Significant fraction of B_s⁰ semileptonic decays, making it important for:

- Comparing inclusive/exclusive decay rates.
- Extracting CKM matrix elements.
- Using semileptonic decays in B_s⁰ mixing.

 $B_s \rightarrow D_{s1}(2536)$: Branching Ratio Calculation

We determine our branching ratio...

 $Br(B_{s}^{0} \rightarrow D_{s1}(2536)\mu\nu X)$

* $f(\mathbf{b} \rightarrow \mathbf{B}_{s}^{0})$

* $Br(D_{s1}(2536) \rightarrow D^{*}K_{s}^{0})$

Fraction of times the b quark will hadronise to $B_s = 0.107 \pm 0.011$

...by normalising to the known value of $(2.75 \pm 0.19)\%$ $Br(b \rightarrow D^* l^+ \nu X)$ * $N(\mathbf{D}_{s1}) / N(\mathbf{D}^* \boldsymbol{\mu})$ * $1 / (\mathbf{R}^{\text{gen}}_{D^*})(\boldsymbol{\varepsilon}_{K_s^0})$ After re-weighting D^{**} Monte Carlo to match data, the ratio of (D^{*} with K_s⁰) versus total D^{*} events is calculated. This gives the efficiency $\boldsymbol{\epsilon}_{_{K,0}}$ of reconstructing a D_{s1} once a $D^*\mu$ candidate is found: $\epsilon_{\rm K,0} = 11.1 \pm 0.3\%$

DPF 2006 October 30th 2006 Oahu, Hawaii

 $B_s \rightarrow D_{s1}(2536)$: Branching Ratio Calculation

We determine our branching ratio... $Br(B_{s}^{0} \rightarrow D_{s1}(2536)\mu\nu X)$ $* Br(D_{s1}(2536) \rightarrow D^{*}K_{s}^{0})$ $* f(b \rightarrow B_{s}^{0})$...by normalising to the known value of $(2.75 \pm 0.19)\%$ $Br(b \rightarrow D^{*}l^{+}\nu X)$ $* N(D_{s1}) / N(D^{*}\mu)$ $* 1 / (R_{gen}^{gen}_{D^{*}})(\varepsilon_{K_{s}^{0}})$

Monte Carlo was used to look at all major decays to $D^*(B_d^0 \rightarrow D^* \mu \nu, B_d^0 \rightarrow D^{**0} \mu \nu, B^+ \rightarrow D^{**+} \mu \nu, B_s^0 \rightarrow D^* \mu \nu)$. In each case the P_t spectra were re-weighted to match D_s^{**} P_t . Efficiencies for all decay channels were combined and determined to be:

• $\epsilon(b \to D^* \mu X) = (6.08 \pm 0.5)\%$

Using same cuts for reconstructed $D^*\mu$ in signal MC, efficiency was found to be:

•
$$\epsilon(B_s^0 \to D_{s1}(2536)\mu \to D^*\mu) = (3.64 \pm 0.02)\%$$

The ratio of efficiencies is then:

•
$$R^{gen}_{D^*} = 0.600 \pm 0.049$$

DPF 2006 October 30th 2006 Oahu, Hawaii

$B_s \rightarrow D_{s1}$ (2536): Event Selection and Fitting

D^{*} Selection:

- Require D^0 and μ in event.
- Additional π with $P_t > 0.18 \text{ GeV/c}$.
- $1.75 < M(D^0) < 1.95 \text{ GeV/c}^2$.
- Track quality constraints (# Hits).
- Signal Fit: Double Gaussian.
- BG Fit: Exp + Poly with threshold cut-off.

D_s^{**} Selection:

- Require D^* and K_{s} .
- $1.80 < M(D^0) < 1.95 \text{ GeV/c}^2$.
- $0.142 < M(D^*) M(D^0) < 0.149 \text{ GeV/c}^2$.
- $P_t(K_s) > 1.0 \text{ GeV/c.}$
- Decay length $(K_s) > 0.5$ cm.
- μ -D^{**} vertex has mass < M(B_s).
- Signal Fit: Double Gaussian.
- BG Fit: Exp + Sqrt with threshold cut-off.

$B_s \rightarrow D_{s1}(2536)$: Results and Interpretation

Putting all the numbers together:

$$Br(B_{s}^{0} \to D_{s1}(2536)\mu\nu X)Br(D_{s1}(2536) \to D^{*}K_{s}^{0})f(b \to B_{s}^{0}) =$$

$$(2.29 \pm 0.43 \text{ (stat)} \pm 0.36 \text{ (syst)}) \times 10^{-4}$$

How does this compare with theory?

Using $f(b \rightarrow B_{s}^{0}) = 0.107 \pm 0.011$

And assuming $Br(D_{s1}(2536) \rightarrow D^{*}K_{s}^{0}) = 0.25$

We obtain:

Source	$Br(B_s^0 \rightarrow D_{s1}(2536) \mu \nu)$
This Result	(0.86±0.16(stat.)±0.13(syst)±0.09(prod.frac.))%
ISGW2	0.53%
RQM	0.39%
HQET & QCD sum rules	0.195%

Summary: Meson Spectroscopy at DØ

• Excited B spectroscopy was pioneered at LEP in the 90s. Now for the first time, hadron-colliding experiments have begun to probe these systems, making new measurements and improving on old ones.

• CDF and DØ show some agreement in their analyses, but also many conflicting observations. Clearly more data is required in order to understand the origins of these differences and converge on the true physical values.

• Now we're also starting to probe the excited D-states through B_s decays. This looks to be a fruitful source of B_s mesons for future measurements, as well as providing comparison with the $B_{(s)}^{**}$ systems.

Extra Slides:

- B^{**} Fitting Details.
- B^{**} Systematic Errors.
- B** Mass Resolution Measurement.
- $B_s^{0} \rightarrow D_s^{**}(2536) \mu \nu$ Systematic Errors.

B_J Mass Distribution: Fitting Function

$$\begin{split} \text{Distribution of } \Delta \text{M fitted by:} \\ F(\Delta M) &= F_{\text{sig}}(\Delta M) + F_{\text{back}}(\Delta M) \\ F_{\text{sig}}(\Delta M) &= \mathbf{N} \{ \mathbf{f}_1.G(\Delta M, \mathbf{E}_1, \Gamma_1) & \mathbf{B}_1 \to \mathbf{B}^{+*} \\ &+ (\mathbf{1} - \mathbf{f}_1).\mathbf{f}_2.G(\Delta M, \mathbf{E}_2, \Gamma_2) & \mathbf{B}_2^* \to \mathbf{B}^{+*} \\ &+ (\mathbf{1} - \mathbf{f}_1).(\mathbf{1} - \mathbf{f}_2).G(\Delta M, \mathbf{E}_3, \Gamma_2) \} & \mathbf{B}_2^* \to \mathbf{B}^+ \end{split}$$

•The function $G(\Delta M, E, \Gamma)$ is the convolution of a relativistic Breit-Wigner function with the experimental resolution in ΔM . Monte Carlo studies show this resolution to be well parameterized by a double-Gaussian function.

• Γ is the mass width of the state, and 'E' is the energy of the transition.

- •The parameters f_1 and f_2 are fractions: f_1 is the proportion of the B_J sample in the state B_1 ;
- f_2 is the branching decay ratio of $B_2^* \rightarrow B^*$.

•N is the total number of events in the signal.

•Background is parameterized by a 4th order polynomial.

B_J Mass Distribution: Fitting Procedure

Constraints:

- $\Gamma_1 = \Gamma_2 \equiv \Gamma$ (Predicted to be very close by all theoretical models)
- $M(B^*) M(B^+) = 45.78 \text{ MeV/c}^2$ (Well-measured experimentally)
- Mass Resolution parameters fixed from MC studies:
 - $\sigma(wide) = 22.5 \pm 5 \text{ MeV/}c^2$
 - $\sigma(narrow) = 8.0 \pm 0.3 \text{ MeV/c}^2$

Free Parameters:

- $\Delta M_1 = M(B_1) M(B^+)$
- $\Delta M_{21} = M(B_2^*) M(B_1)$
- Γ
- f_1 (Polarisation of initial B_J sample)
- f_2 (Decay Branching Fraction $B_2^* \rightarrow B^*$)
- N (Total number of B_J events in signal)
- Background polynomial coefficients $(p0 \rightarrow p4)$

With these free parameters, a χ^2 fit was performed over the ΔM distribution.

B_J Mass Distribution: Systematic Errors

The effect of various sources of systematic error were measured:

Source	$\mathrm{dM(B}_{1})(\mathrm{MeV/c^{2}})$	dM21 (MeV/c ²)	dΓ(Μες/χ ²)	df1	df2	dN
BG Parameterization	0.8	0.3	3.4	0.012	0.01	64
Fitting Range	0.2	0.2	1.0	0.008	0.01	22
Rebinning	5.2	0.9	0	0.069	0.114	18
No Constraint $\Gamma_1 = \Gamma_2$	0.2	0.1	2.1	0	0	2
B* Mass Uncertainty	0.3	0.2	0.04	0.002	0.002	0
Mass Resolution Uncertainty	0.2	0.3	0.75	0.007	0.007	10
Momentum Scale Uncertainty	0.5	0.003	0	0	0	0
Total	5.30	1.04	4.2	0.071	0.115	71

DPF 2006 October 30th 2006 Oahu, Hawaii

B^{**} Mass Resolution Measurement

To measure the experimental resolution of the variable $\Delta M = M(B_J) - M(B^+)$, Monte Carlo data was used to plot the distribution of $\Delta M_{gen} - \Delta M_{reco}$.

Double-Gaussian Peak Fit:

- Width(wide) = $22.5 \pm 5 \text{ MeV/c}^2$
- Width(narrow) = $8.0 \pm 0.3 \text{ MeV/c}^2$
- N(narrow)/N(wide) = 5.89 ± 1.8
- $\chi^2/ndf = 89/83 = 1.07$

M(gen) - M(recon)

•Two-peak distribution arises because of the missing energy from the unreconstructed photon in all decays via B*. Position of displaced peak is consistent with photon energy of 45.8 MeV •Single Gaussian Fit returns $\chi^2/ndf = 156.7/95 = 1.65$

DPF 2006 October 30th 2006 Oahu, Hawaii

B^{**} Mass Resolution Measurements (2)

$B_s \rightarrow D_{s1}(2536)$: Systematic Errors (1)

The effect of various sources of systematic error were measured:

Source		Systematic error
Normalizing Br	Br(b→ D [*] μX)	6.9%
N(D*μ)	Signal Modeling	0.5%
	Background Modeling	1.3%
	ccbar Contribution	2.7%
N(D _{s1} (2536))	Signal Modeling	3.0%
	Background Modeling	4.6%
٤ _{Ks}	MC Statistics	2.8%
	Semileptonic decay model	1.2%
	Weighting Procedure	2.4%
	Detector Modeling	4.0%
R ^{gen} _{D*}	MC stats, PDG Br, and f uncertainties	8.2%
	Weighting Procedure	7.4%
	Semileptonic Decay Model	0.9%

DPF 2006 October 30th 2006 Oahu, Hawaii

Mark Williams

LANCASTE UNIVERSI

$B_s \rightarrow D_{s1}(2536)$: Systematic Errors (2)

- With decay length significance cut, **ccbar contamination** estimate at $3.9 \pm 2.5\%$ Consistent with zero, but large error (used full error as systematic).
- Varying signal model:
 - $N(D^*)$ fit with both double and triple Gaussian
 - $N(D_s^{**})$ fit with both single and double Gaussian
- Varying Background model:
 - N(D^{*}) fit with exponential alone and exponential plus square root function.
 - $N(D_s^{**})$ fit with exponential plus polynomial.

