

DPF 2006, October 29 - November 3rd, 2006, Honolulu/HI/USA

Motivation: $B_s - \mu^+\mu^-$

In the Standard Model:

- B_s->µ⁺µ⁻: FCNC process, BF=0 at tree level
- Standard Model expectations: BF(B_s⁰-> $\mu^+\mu^-$) = (3.42 ± 0.54) × 10⁻⁹
 - $BF(B_d^{0} \rightarrow \mu^+ \mu^-) = (1.00 \pm 0.14) \times 10^{-10}$

Physics beyond the Standard Model:

- additional particles can contribute to loops
- MSSM: BF enhanced by up to 3 orders of magnitude
- enhancements in many models
- => hope to find something...!

Motivation: $B_s - \Rightarrow \phi \mu^+ \mu^-$

In the Standard Model:

• $B_s \rightarrow \phi \mu^+ \mu^-$: larger expected BF

 $BF(B_s^0 \rightarrow \phi \mu^+ \mu^-) = 1.6 \times 10^{-6}$ (~30% theory uncertainty)

 $BF(B_d^0 \rightarrow X_s \mu^+ \mu^-)$ measured at BaBar/Belle

sensitivity close to prediction => test the Standard Model!

Physics beyond the Standard Model:

- additional particles can contribute to loops
- => hope to find something...!

Production of B_s Mesons

- No production of B_s mesons in Y(4s) decays
- Tevatron: abundant source of bbbar events hadronization: f(b->B_s) ~ 10%

DØ muon detector:

11/01/2006

Frank Fiedler - Rare B_s Decays at the DØ Experiment

LMU

Production of B_s Mesons

- No production of B_s mesons in Y(4s) decays
- Tevatron: abundant source of bbbar events hadronization: f(b->B_s) ~ 10%

11/01/2006

Frank Fiedler - Rare B_s Decays at the DØ Experiment

LMU

Search for $B_s - \mu^+\mu^-$

Concepts:

• preselection of dimuon events optimized selection of $B_s - \mu^+\mu^-$ decay candidates

reconstruct resonant decay B⁺ -> J/Ψ K⁺
 => efficiency normalization

- side band technique
 - => background subtraction

blind analysis
 => avoid bias

11/01/2006

11/01/2006

Search for $B_s - \mu^+\mu^-$

Event preselection:

• dimuon trigger • two muons: $p_T(\mu) > 2.5 \text{ GeV}$ $|\eta(\mu)| < 2.0$ opposite charges fragmentation tracks • muons form common secondary vertex (reconstructed in 3d): $\chi^2/dof < 10$ 4.5 GeV < m(µ⁺µ⁻) < 7.0 GeV minimum number of hits in vertex (3) and tracking detectors (4) δL_{xy} < 0.15 mm (L_{xy} : secondary vertex decay length in xy) $p_{T}(\mu^{+}\mu^{-}) > 5 \text{ GeV}$

11/01/2006

Search for $B_s - \mu^+\mu^-$

Final event selection:

- -> pointing angle
- -> isolation
- -> decay length significance
- cut optimization based on MC signal

background from data sidebands

PRL 94, 071802 (2005)

Frank Fiedler - Rare B_s Decays at the DØ Experiment

Search for $B_s - \mu^+\mu^-$

Final event selection:

- -> pointing angle
- -> isolation
- -> decay length significance
- cut optimization based on MC signal

background from data sidebands

PRL 94, 071802 (2005)

11/01/2006

Search for $B_s - \mu^+\mu^-$

Final event selection:

- -> pointing angle
- -> isolation
- -> decay length significance
- cut optimization based on MC signal

background from data sidebands

PRL 94, 071802 (2005)

11/01/2006

• Analysis based on the ratio $B_s \rightarrow \mu^+\mu^- / B^+ \rightarrow J/\Psi(-\mu^+\mu^-) K^+$:

- Branching fraction we want to calculate and number of observed events (for example: upper limit)
- Branching fraction for reference process and number of observed events

• Analysis based on the ratio $B_s \rightarrow \mu^+\mu^- / B^+ \rightarrow J/\Psi(-\mu^+\mu^-) K^+$:

$$\mathbf{BF} \left(B_{s}^{0} \to \mu^{+} \, \mu^{-} \right) \leq \frac{N_{ul}}{N_{B^{\pm}}} \cdot \underbrace{ \varepsilon_{\mu\mu K}^{B^{\pm}}}_{\varepsilon_{\mu\mu}}^{B^{\pm}} \frac{\mathbf{BF} \left(B^{\pm} \to J / \psi \left(\mu^{+} \, \mu^{-} \right) K^{\pm} \right)}{\left(\frac{f_{b \to B_{s}}}{f_{b \to B_{u,d}}} + R \cdot \frac{\varepsilon_{\mu\mu}^{B_{d}^{0}}}{\varepsilon_{\mu\mu}^{B_{s}^{0}}} \right) }$$

- Branching fraction we want to calculate and number of observed events (for example: upper limit)
- Branching fraction for reference process and number of observed events
- Efficiency ratio: signal / reference process
- Production ratio: B_s (signal) / B^+ (reference)

• Analysis based on the ratio $B_s \rightarrow \mu^+\mu^- / B^+ \rightarrow J/\Psi(-\mu^+\mu^-) K^+$:

$$\mathbf{BF}\left(B_{s}^{0} \to \mu^{+} \mu^{-}\right) \leq \frac{N_{ul}}{N_{B^{\pm}}} \cdot \frac{\varepsilon_{\mu\mu K}^{B^{\pm}}}{\varepsilon_{\mu\mu}^{B_{s}}} \quad \frac{\mathbf{BF}\left(B^{\pm} \to J/\psi\left(\mu^{+} \mu^{-}\right)K^{\pm}\right)}{\frac{f_{b \to B_{s}}}{f_{b \to B_{u,d}}} + \left(R \cdot \frac{\varepsilon_{\mu\mu}^{B_{d}}}{\varepsilon_{\mu\mu}^{B_{s}}}\right)$$

- Branching fraction we want to calculate and number of observed events (for example: upper limit)
- Branching fraction for reference process and number of observed events
- Efficiency ratio: signal / reference process
- Production ratio: B_s (signal) / B^+ (reference)
- Account for $B_d \rightarrow \mu^+\mu^-$ contributions (but R expected to be small)

Results

11/01/2006

Search for $B_s - \Rightarrow \phi \mu^+ \mu^-$

Search for $B_s - \Rightarrow \phi \mu^+ \mu^-$

Final event selection:

- similar to $B_s \rightarrow \mu^+\mu^-$ selection
 - -> pointing angle
 - -> isolation
 - -> decay length significance
- cut optimization based on MC signal

background from data sidebands

11/01/2006

Normalization

• Analysis based on the ratio $B_s \rightarrow \mu^+\mu^- \phi(-K^+K^-) / B_s \rightarrow J/\Psi(-\mu^+\mu^-) \phi(-K^+K^-)$:

$$\begin{array}{c} \mathcal{B}(B^0_s \to \phi \, \mu^+ \mu^-) \\ \mathcal{B}(B^0_s \to J/\psi \, \phi) \end{array} = \begin{array}{c} N_{\mathrm{ul}} \\ N_{B^0_s} \end{array} \cdot \frac{\epsilon_{J/\psi\phi}}{\epsilon_{\phi\mu^+\mu^-}} \cdot \mathcal{B}(J/\psi \to \mu^+ \mu^-) \end{array}$$

- Branching fraction we want to calculate and number of observed events (for example: upper limit)
- Branching fraction for reference process and number of observed events

• Analysis based on the ratio $B_s \rightarrow \mu^+\mu^- \phi(-K^+K^-) / B_s \rightarrow J/\Psi(-\mu^+\mu^-) \phi(-K^+K^-)$:

$$\frac{\mathcal{B}(B_s^0 \to \phi \,\mu^+ \mu^-)}{\mathcal{B}(B_s^0 \to J/\psi \,\phi)} = \frac{N_{\rm ul}}{N_{B_s^0}} \cdot \underbrace{\frac{\epsilon_{J/\psi\phi}}{\epsilon_{\phi\mu^+\mu^-}}}_{\epsilon_{\phi\mu^+\mu^-}} \cdot \underbrace{\mathcal{B}(J/\psi \to \mu^+ \mu^-)}_{\epsilon_{\phi\mu^+\mu^-}}$$

- Branching fraction we want to calculate and number of observed events (for example: upper limit)
- Branching fraction for reference process and number of observed events
- Efficiency ratio: signal / reference process
- Branching fraction $J/\Psi \rightarrow \mu^+\mu^-$ in reference process

Result

Observed B_s -> J/Ψ(->μ⁺μ⁻) φ(->K⁺K⁻) signal:

PRD 74, 031107 (2006)

 branching fraction (PDG): BF(B_s -> J/Ψ(->μ⁺μ⁻) φ(->K⁺K⁻)) = (9.3 ± 3.3) × 10⁻⁴

• Selected $B_s \rightarrow \mu^+\mu^- \phi(-K^+K^-)$ candidates:

11/01/2006

- Searches for FCNC processes may yield information on physics beyond the Standard Model
- Hadron colliders (->Tevatron): "natural B_s laboratory"

BF($B_{s} - \mu^{+}\mu^{-}$):

- SM expectation: = (3.42 ± 0.54) × 10⁻⁹ limit: < 3.7×10⁻⁷ (95% CL) (300 pb⁻¹) DØ note 4733 (2005) sensitivity: < 2.3×10⁻⁷ (95% CL) (700 pb⁻¹) DØ note 5009 (2006)
- Probing new physics models
- Further improvements soon (likelihood selection, full Run IIa dataset)

BF($B_s - > \mu^+ \mu^- \phi(- > K^+ K^-)$):

 SM expectation: = 1.6 × 10⁻⁶ (±30%) limit: < 4.1 × 10⁻⁶ (95% CL) (450 pb⁻¹) PRD 74, 031107 (2006)
 SM expectation accessible at Tevatron Run II!

Backup Slides

11/01/2006

Optimization of the Selection LMU

- Optimization based on
 - signal MC events
 - background data events from mass sidebands
 - (>3 σ away from Bs mass)
- Procedure to find the optimum cut values:
 - random grid search (N. Amos et al., proceedings of CHEP95, p. 215)
 - optimization (G. Punzi, proceedings of Phystat03, p. 79): maximize the variable

 $P = \frac{\varepsilon(B_{s} - >\mu^{+}\mu^{-})}{a/2 + \sqrt{N_{bkg}}}$ $\varepsilon: selection efficiency (MC)$ $N_{bkg}: expected number of$ background eventsa: number of standard deviations at which the signal hypothesis is tested (a=2 -> ~95% CL)

- Limits take into account
 - statistical uncertainty on the background expectation
 - systematic uncertainties, e.g. for $B_s \rightarrow \mu^+\mu^-$:

ratio of $B_s/B_{u/d}$ hadronization fractions

 $B^+ \mathchar`+ \mu^+ \mu^- K^+ \ / \ B_s \mathchar`+ \mu^+ \mu^-$ efficiency ratio

number of reconstructed $B^+-\mu^+\mu^-K^+$ decays

 $B^+->J/\Psi K^+$ branching fraction

 $J/\Psi \rightarrow \mu^+\mu^-$ branching fraction

 Integrate over probability functions (parametrize uncertainties), prescription: J. Conrad et al, PRD 67, 012002 (2003)
 G.J. Feldman, R.D. Cousins, PRD 57, 3873 (1998)

• Alternative:

Bayesian approach (flat prior, Gaussian uncertainties) I. Bertram et al., Fermilab-TM-2104 (2000)

$B_s - \mu^+\mu^-$: Compare with CDF LMU

references:	DØ note 5009	CDF note 8176
• integrated luminosity:	700 pb ⁻¹	780 pb ⁻¹
• muon p _T > :	2.5 GeV	2.0 GeV (CMU),
		2.2 GeV (CMX)
• muon ŋ < :	2.0	1.0
• p _T (B _s) > :	5.0 GeV	4.0 GeV
• µµ mass resolution:	90 MeV	24 MeV
selection:	cut-based	likelihood-based
resulting limit (95%CL):	2.3x10 ⁻⁷ (sensitivity)	1.0×10-7

y