Infrared features of the ghost propagators in quenched and unquenched lattice

Landau gauge QCD

Hideo Nakajima, * Department of Information science,
Utsunomiya University
Sadataka Furui, † School of Science and Engineering,
Teikyo University

31 October 2006, JPS APS joint meeting

*e-mail nakajima@is.utsunomiya-u.ac.jp
†e-mail furui@umb.teikyo-u.ac.jp
Contents

I. Introduction
II. Color confinement
III. The lattice Landau gauge
IV. The Kugo-Ojima theory and the Zwanziger theory
V. The ghost propagator
VI. Summary and discussion

Brazilian Journal of Physics (IRQCD in Rio)(2006), hep-lat/0609024
I. Introduction

- Unquenched lattice Landau gauge simulation using MILC Asqtad Kogut-Susskind fermions.

- Color confinement
 - The Kugo-Ojima confinement parameter c.
 - A^2 condensate in running coupling, gluon propagator and quark propagator.
 - Ghost condensate parameter ν and Binder cumulant of the color anti-symmetric ghost propagator.

- Dynamical chiral symmetry breaking
II. Color Confinement

- Kugo-Ojima theory based on the Lagrangian satisfying BRST symmetry yields a confinement criterion (A two-point function at $q = 0$). (Kugo-Ojima 1979)

- Gribov-Zwanziger theory gives a sufficient condition of the confinement for infrared exponents of gluon propagator and ghost propagator. (Gribov 1978, Zwanziger 1991)

- The lattice simulation of running coupling $\alpha_s(q)$ in MOM scheme suggests presence of mass-dimension 2 (A^2) condensates. (Boucaud et al. 2000)
• The mass-dimension 2 condensates can be related to Zwanziger’s horizon condition generated by restriction of the gauge field in fundamental modular region. (Dudal et al. 2005)

• The A^2 is not BRST invariant. A mixed condensate with $\bar{c}c$ becomes on-shell BRST invariant. (Kondo 2003)

• Local Composite Operator (LCO) approach suggests that $\bar{c}c$ condensate manifest itself in the color anti-symmetric ghost propagator. (Dudal et al. 2005)

• Investigation of the ghost condensate in SU(2) lattice Landau gauge was performed. (Cucchieri et al. 2005)
• The Kugo-Ojima confinement criterion:

\[(\delta_{\mu\nu} - \frac{q_\mu q_\nu}{q^2})u^{ab}(q^2)\]

\[= \frac{1}{V} \sum_{x,y} e^{-ip(x-y)} \langle \text{tr} \left(\Lambda^{a\dagger} D_\mu \frac{1}{-\partial D} [A_\nu, \Lambda^b] \right) \rangle_{xy}.\]

The fact that the parameter \(c\) defined as \(u^{ab}(0) = -\delta^{ab} c\) becomes 1 is the confinement criterion.

• The parameter \(c\) is related to the renormalization factor as

\[1 - c = \frac{Z_1}{Z_3} = \frac{\tilde{Z}_1}{\tilde{Z}_3} = \frac{Z_1^\psi}{Z_2}\]

• If the finiteness of \(\tilde{Z}_1\) is proved, divergence of \(\tilde{Z}_3\) is a sufficient condition. If \(Z_3\) vanishes in the infrared, \(Z_1\) should have higher order 0. If \(Z_2\) is finite \(Z_1^\psi\) should vanish.
• Zwanziger’s horizon condition

\[\sum_{x,y} e^{-ip(x-y)} \left\langle \text{tr} \left(\Lambda^a \left(\frac{1}{-\partial D} (-D_\nu) \Lambda^b \right) \right)_{xy} \right\rangle \]

\[= G_{\mu\nu}(p) \delta^{ab} = \left(\frac{e}{d} \right) \frac{p_\mu p_\nu}{p^2} \delta^{ab} - \left(\delta_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right) u^{ab}, \]

where, with use of the covariant derivativative \(D_\mu(U) \)

\[D_\mu(U_{x,\mu}) \phi = S(U_{x,\mu}) \partial_\mu \phi + [A_{x,\mu}, \phi], \]

\(\partial_\mu \phi = \phi(x + \mu) - \phi(x), \) and \(\bar{\phi} = \frac{\phi(x + \mu) + \phi(x)}{2} \)

\[e = \left\langle \sum_{x,\mu} \text{tr}(\Lambda^a \Lambda^b) \right\rangle \left/ \{(N_c^2 - 1)V\} \right. \]
The horizon condition reads \(\lim_{p \to 0} G_{\mu\mu}(p) - e = 0 \), and the l.h.s. of the condition is \(\left(\frac{e}{d} \right) + (d - 1)c - e = (d - 1)h \) where \(h = c - \frac{e}{d} \) and dimension \(d = 4 \), and it follows that \(h = 0 \) → horizon condition, and thus the horizon condition coincides with Kugo-Ojima criterion provided the covariant derivative approaches the naive continuum limit, i.e., \(e/d = 1 \).

The renormalization group flow of the ghost propagator is assumed to follow perturbative renormalization-group flow equation.

Suppression of the infrared modes of the gauge field corresponds to the vanishing of the gluon propagator.
III. The lattice Landau gauge

- Two types of the gauge field definitions:
 1. log U type: $U_{x,\mu} = e^{A_{x,\mu}}$, $A_{x,\mu}^\dagger = -A_{x,\mu}$,

 2. U linear type: $A_{x,\mu} = \frac{1}{2} (U_{x,\mu} - U_{x,\mu}^\dagger)|_{trlp}$,

 ($A_{\mu}(x) = i \sum_a A_{\mu}^a(x) \frac{\Lambda^a}{\sqrt{2}}$, $\text{tr}\Lambda^a \Lambda^b = \delta^{ab}$)

- The optimizing function
 1. $F_U(g) = ||A^g||^2 = \sum_{x,\mu} \text{tr} \left(A_{x,\mu}^g A_{x,\mu}^{g\dagger} \right)$,

 2. $F_U(g) = \sum_{x,\mu} \text{tr} \left(2 - (U_{x,\mu}^g + U_{x,\mu}^{g\dagger}) \right)$,
• Under infinitesimal gauge transformation $g^{-1}\delta g = \epsilon$, its variation reads for either definition as

$$\Delta F_U(g) = -2\langle \partial A^g|\epsilon \rangle + \langle \epsilon| - \partial D(U^g)|\epsilon \rangle + \cdots,$$

• Stationality (Landau gauge), Local minimum (Gribov Region), Global minimum (Fundamental modular (FM) region)
Kugo-Ojima parameter c of quenched SU(3)

$U-$linear(left) and log U(right). $\beta = 6.0$ and 6.4.

<table>
<thead>
<tr>
<th>β</th>
<th>L</th>
<th>c_1</th>
<th>e_1/d</th>
<th>h_1</th>
<th>c_2</th>
<th>e_2/d</th>
<th>h_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>16</td>
<td>0.576(79)</td>
<td>0.860(1)</td>
<td>-0.28</td>
<td>0.628(94)</td>
<td>0.943(1)</td>
<td>-0.32</td>
</tr>
<tr>
<td>6.0</td>
<td>24</td>
<td>0.695(63)</td>
<td>0.861(1)</td>
<td>-0.17</td>
<td>0.774(76)</td>
<td>0.944(1)</td>
<td>-0.17</td>
</tr>
<tr>
<td>6.0</td>
<td>32</td>
<td>0.706(39)</td>
<td>0.862(1)</td>
<td>-0.15</td>
<td>0.777(46)</td>
<td>0.944(1)</td>
<td>-0.16</td>
</tr>
<tr>
<td>6.4</td>
<td>32</td>
<td>0.650(39)</td>
<td>0.883(1)</td>
<td>-0.23</td>
<td>0.700(42)</td>
<td>0.953(1)</td>
<td>-0.25</td>
</tr>
<tr>
<td>6.4</td>
<td>48</td>
<td>0.739(65)</td>
<td>0.884(1)</td>
<td>-0.15(7)</td>
<td>0.793(61)</td>
<td>0.954(1)</td>
<td>-0.16</td>
</tr>
<tr>
<td>6.4</td>
<td>56</td>
<td>0.758(52)</td>
<td>0.884(1)</td>
<td>-0.13(5)</td>
<td>0.827(27)</td>
<td>0.954(1)</td>
<td>-0.12</td>
</tr>
<tr>
<td>6.45</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td>0.814(89)</td>
<td>0.954(1)</td>
<td>-0.14</td>
</tr>
</tbody>
</table>
MILC configurations used in our simulation

<table>
<thead>
<tr>
<th></th>
<th>β_{imp}</th>
<th>$am_{ud}^{VWI}/am_{s}^{VWI}$</th>
<th>N_f</th>
<th>$1/a$(GeV)</th>
<th>L_s</th>
<th>L_t</th>
<th>aL_s(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILC$_c$</td>
<td>6.83</td>
<td>0.040/0.050</td>
<td>2+1</td>
<td>1.64</td>
<td>20</td>
<td>64</td>
<td>2.41</td>
</tr>
<tr>
<td></td>
<td>6.76</td>
<td>0.007/0.050</td>
<td>2+1</td>
<td>1.64</td>
<td>20</td>
<td>64</td>
<td>2.41</td>
</tr>
<tr>
<td>MILC$_f$</td>
<td>7.11</td>
<td>0.0124/0.031</td>
<td>2+1</td>
<td>2.19</td>
<td>28</td>
<td>96</td>
<td>2.52</td>
</tr>
<tr>
<td></td>
<td>7.09</td>
<td>0.0062/0.031</td>
<td>2+1</td>
<td>2.19</td>
<td>28</td>
<td>96</td>
<td>2.52</td>
</tr>
<tr>
<td>MILC$_{ft}$</td>
<td>5.65</td>
<td>0.008</td>
<td>2</td>
<td>1.716</td>
<td>24</td>
<td>12</td>
<td>2.76</td>
</tr>
<tr>
<td></td>
<td>5.725</td>
<td>0.008</td>
<td>2</td>
<td>1.914</td>
<td>24</td>
<td>12</td>
<td>2.47</td>
</tr>
<tr>
<td></td>
<td>5.85</td>
<td>0.008</td>
<td>2</td>
<td>2.244</td>
<td>24</td>
<td>12</td>
<td>2.11</td>
</tr>
</tbody>
</table>
The Kugo-Ojima parameter of unquenched SU(3)

Table 1: The Kugo-Ojima parameter for the polarization along the spacial directions c_x and that along the time direction c_t and the average c, trace divided by the dimension e/d, horizon function deviation h of the unquenched KS fermion (MILC$_c$, MILC$_f$, MILC$_{ft}$) with use of log U definition.

<table>
<thead>
<tr>
<th></th>
<th>β_{imp}</th>
<th>c_x</th>
<th>c_t</th>
<th>c</th>
<th>e/d</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILC$_c$</td>
<td>6.76</td>
<td>1.04(11)</td>
<td>0.74(3)</td>
<td>0.97(16)</td>
<td>0.9325(1)</td>
<td>0.03(16)</td>
</tr>
<tr>
<td></td>
<td>6.83</td>
<td>0.99(14)</td>
<td>0.75(3)</td>
<td>0.93(16)</td>
<td>0.9339(1)</td>
<td>-0.00(16)</td>
</tr>
<tr>
<td>MILC$_f$</td>
<td>7.09</td>
<td>1.06(13)</td>
<td>0.76(3)</td>
<td>0.99(17)</td>
<td>0.9409(1)</td>
<td>0.04(17)</td>
</tr>
<tr>
<td></td>
<td>7.11</td>
<td>1.05(13)</td>
<td>0.76(3)</td>
<td>0.98(17)</td>
<td>0.9412(1)</td>
<td>0.04(17)</td>
</tr>
<tr>
<td>MILC$_{ft}$</td>
<td>5.65</td>
<td>0.72(13)</td>
<td>1.04(23)</td>
<td>0.80(21)</td>
<td>0.9400(7)</td>
<td>-0.14</td>
</tr>
<tr>
<td></td>
<td>5.725</td>
<td>0.68(15)</td>
<td>0.77(16)</td>
<td>0.70(15)</td>
<td>0.9430(2)</td>
<td>-0.24</td>
</tr>
<tr>
<td></td>
<td>5.85</td>
<td>0.63(19)</td>
<td>0.60(12)</td>
<td>0.62(17)</td>
<td>0.9465(2)</td>
<td>-0.33</td>
</tr>
</tbody>
</table>
Fig. 1: Kugo-Ojima parameter $u(0)$ of MILC$_f$ $N_f = 2 + 1$ KS fermion unquenched configurations of $\beta_{imp} = 7.11$(green diamonds), $\beta_{imp} = 7.09$(red stars).

Fig. 2: Kugo-Ojima parameter $u(0)$ of MILC finite temperature configurations of $\beta = 5.65$(blue diamonds), $\beta = 5.725$(red stars) and $\beta = 5.85$(green triangles).
IV. The Ghost propagator

\[
FT[D_G^{ab}(x, y)] = FT(\text{tr}(\Lambda^a (\mathcal{M}[U])^{-1})_{xy} \Lambda^b),
\]

\[
= \delta^{ab} D_G(q^2),
\]

\[
\mathcal{M} = -\partial_\mu D_\mu.
\]

- Ghost dressing function \(G(q^2) = q^2 D_G(q^2) \).

- Solve the equation with plane wave sources.

\[
-\partial_\mu D_\mu f_s^b(x) = \frac{1}{\sqrt{V}} \Lambda^b \sin \mathbf{q} \cdot \mathbf{x} \tag{1}
\]

\[
-\partial_\mu D_\mu f_c^b(x) = \frac{1}{\sqrt{V}} \Lambda^b \cos \mathbf{q} \cdot \mathbf{x}. \tag{2}
\]
• Color diagonal ghost propagator

\[D_G(q) = \frac{1}{N_c^2 - 1V} \]

\[\times \delta^{ab}(\langle \Lambda^a \cos q \cdot x|f_c^b(x)\rangle + \langle \Lambda^a \sin q \cdot x|f_s^b(x)\rangle) \]

(3)

• Color anti-symmetric ghost propagator

\[\phi^c(q) = \frac{1}{\mathcal{N} V} \]

\[\times f^{abc}(\langle \Lambda^a \cos q \cdot x|f_s^b(x)\rangle - \langle \Lambda^a \sin q \cdot x|f_c^b(x)\rangle) \]

(4)

where \(\mathcal{N} = 2 \) for SU(2) and 6 for SU(3).
Fig. 3: Log of the ghost dressing function $\log_{10} G(q)$ as a function of $\log_{10} q$(GeV) of MILC$_f$ $\beta_{imp} = 7.09$ (diamonds) and that of quenched $\beta = 6.45$ 564 (stars).

Fig. 4: The ghost dressing function of MILC$_f$ $\beta_{imp} = 7.09$ (stars) Dashed line is the 4-loop $N_f = 2$ pQCD result ($\lambda_G = 3.01, y = 0.0246100$)
Fig. 5: Log of the color diagonal ghost propagator of $\log_{10}[D_G(q)]$ as a function of q(GeV) MILC$_c$.

Fig. 6: Log of the color antisymmetric ghost propagator squared $\log_{10}[\phi(q)^2]$ as a function of q(GeV). 20$^3 \times 64$ MILC$_c$.
The ghost condensate

- The ghost condensate $\langle f^{abc} c^{b} c^{c} \rangle$ in the color anti-symmetric ghost propagator is parametrized by v, r and z.

- Expression of the finite size effect in the $L^3_t L_t$ lattice for q_μ under cylinder cut is difficult. Our choice is,

\[
\frac{1}{N_c^2 - 1} \sum_a \frac{\sqrt{L^3_x L_t}}{\cos(\pi \tilde{q}/8 \sqrt{L_x L_t})} \langle |\phi^a(q)| \rangle = \frac{r}{q^z}, \quad (5)
\]

\[
\tilde{q}^2 = \sum_{i=1}^{3} \left(2 \sin \frac{\pi \tilde{q}_i}{L_x} \right)^2 + \left(2 \sin \frac{\pi \tilde{q}_4}{L_t} \right)^2 \quad (6)
\]

\[
\frac{1}{N_c^2 - 1} \sum_a \langle |\phi^a(q)| \rangle = \frac{r/\sqrt{L^3_x L_t} + v}{q^4 + v^2} \quad (7)
\]
Fig. 7: The logarithm of the color antisymmetric ghost propagator of MILC$_f$ as the function of $\log_{10}(q(\text{GeV}))$ and the fit using $r = 134$ and $v = 0.026\text{GeV}^2$.

Fig. 8: The logarithm of the color antisymmetric ghost propagator of MILC$_{ft}$ of $T = 143\text{MeV}$ (blue diamonds), $T = 159.5\text{MeV}$ (red stars) and $T = 187\text{MeV}$ (green triangles) and their fits.
The Binder cumulant

- Binder cumulant of the color antisymmetric ghost propagator

\[U(q) = 1 - \frac{\langle \phi(q)^4 \rangle}{3\langle \phi(q)^2 \rangle^2}. \]

- Suppression away from the d-dimensional gaussian distribution

\[\frac{\langle \phi^4 \rangle}{\langle \phi^2 \rangle^2} = \frac{d + 2}{d} \] may imply presence of ghost condensate.
• Quenched SU(2) is compatible with gaussian. MILC$_c$ shows a larger randomness than the Gaussian.

Fig. 9: The momentum dependence of Binder cumulant $U(q)$ of SU(2), $\beta = 2.2$, $a = 1.07\text{GeV}^{-1}$ of PT samples (blue triangles) and first copy samples (green diamonds).

Fig. 10: The momentum dependence of Binder cumulant $U(q)$ of unquenched SU(3), $a = 1.64\text{GeV}^{-1}$ MILC$_c$.
Exceptional samples

- In $\beta = 6.4, 56^4$ quenched SU(3) configurations, we found a copy whose $\alpha_G = 0.272$ v.s. α_G(average)$=0.223$, and whose gluon propagator has an axis along which the reflection positivity is manifestly violated.

- In the $\beta_{imp} = 6.76, 20^3 \times 64$ MILCc configurations (21 samples), we find a similar exceptional sample.

- The exceptional sample makes the sample average of the Binder cumulant of color anti-symmetric ghost propagator in the infrared small, and the standard deviation large.
Fig. 11: The Binder cumulant of the color antisymmetric ghost propagator of MILC_{ft} \(N_f = 2 \) configurations of \(\beta = 5.725 \) (red stars).

Fig. 12: Averages over momenta excluding the lowest momentum point of the Binder cumulants of MILC finite temperature configurations. \(\beta = 5.65 \) (blue diamonds), \(\beta = 5.725 \) (red stars) and \(\beta = 5.85 \) (green triangles).
The fitted parameters r, z, v of $|\phi(q)|$, $\bar{r}, \bar{z}, \bar{v}$ of $\phi(q)^2$ and U of MILC$_c$ and MILC$_f$ samples. (U of MILC$_f$ corresponds to the average below $q = 1$GeV and the average above 1GeV, respectively)

<table>
<thead>
<tr>
<th>β_{imp}</th>
<th>m_0(MeV)</th>
<th>r</th>
<th>z</th>
<th>v</th>
<th>\bar{r}</th>
<th>\bar{z}</th>
<th>\bar{v}</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.76</td>
<td>11.5/82.2</td>
<td>37.5</td>
<td>3.90</td>
<td>0.012</td>
<td>33.5</td>
<td>7.6</td>
<td>0.045</td>
<td>0.53(5)</td>
</tr>
<tr>
<td>6.83</td>
<td>65.7/82.2</td>
<td>38.7</td>
<td>3.85</td>
<td>0.007</td>
<td>33.5</td>
<td>7.6</td>
<td>0.048</td>
<td>0.57(4)</td>
</tr>
<tr>
<td>7.09</td>
<td>13.6/68.0</td>
<td>134</td>
<td>3.83</td>
<td>0.026</td>
<td>251</td>
<td>7.35</td>
<td>0.044</td>
<td>0.57(4)/0.56(1)</td>
</tr>
<tr>
<td>7.11</td>
<td>27.2/68.0</td>
<td>112</td>
<td>3.81</td>
<td>0.028</td>
<td>164</td>
<td>7.34</td>
<td>0.002</td>
<td>0.58(2)/0.52(1)</td>
</tr>
</tbody>
</table>

The data of MILC$_f$ $\beta_{imp} = 7.11$ are rather noisy. $U(q)$ below 1GeV and above 1GeV are different. The anomaly is correlated with that of the dynamical quark mass function.
The infrared exponents of ghost and gluon

<table>
<thead>
<tr>
<th></th>
<th>β/β_{imp}</th>
<th>α_G</th>
<th>α_D</th>
<th>$\alpha_D + 2\alpha_G$</th>
</tr>
</thead>
<tbody>
<tr>
<td>quench</td>
<td>6.40</td>
<td>0.22</td>
<td>-0.32</td>
<td>0.12</td>
</tr>
<tr>
<td>MILC$_c$</td>
<td>6.76</td>
<td>0.25</td>
<td>-0.60</td>
<td>-0.10</td>
</tr>
<tr>
<td></td>
<td>6.83</td>
<td>0.23</td>
<td>-0.57</td>
<td>-0.11</td>
</tr>
<tr>
<td>MILC$_f$</td>
<td>7.09</td>
<td>0.24</td>
<td>-0.67</td>
<td>-0.19</td>
</tr>
<tr>
<td></td>
<td>7.11</td>
<td>0.23</td>
<td>-0.65</td>
<td>-0.19</td>
</tr>
</tbody>
</table>
VII. The quark propagator

- The statistical average over Landau-gauge-fixed samples

\[S_{\alpha\beta}(p) = \left\langle (\chi_{p,\alpha} | \frac{1}{i\not{\partial}(U) + m} | \chi_{p,\beta}) \right\rangle \]

The inversion, \(\frac{1}{i\not{\partial}(U) + m} \), is performed via conjugate gradient method after preconditioning.

\[S_{\alpha\beta}(q) = Z_2(q) \frac{-i\gamma q + M(q)}{q^2 + M(q)^2} \]
• The mass function in large q.

\[
M(q) = -\frac{4\pi^2 d_M \langle \bar{\psi} \psi \rangle_{\mu} [\log(q^2/\Lambda_{QCD}^2)]^{d_M-1}}{3q^2 [\log(\mu^2/\Lambda_{QCD}^2)]^{d_M}} + \frac{m(\mu^2) [\log(\mu^2/\Lambda_{QCD}^2)]^{d_M}}{[\log(q^2/\Lambda_{QCD}^2)]^{d_M}},
\]

\[
d_M = 12/(33 - 2N_f)
\]

• The mass function in the infrared region.

\[
M(q) = \frac{\bar{c} \Lambda^3}{q^2 + \Lambda^2} + m_0
\]
The mass function

The parameters \(\tilde{c} \) and \(\Lambda \) of the Staple+Naik action (left) and the Asqtad action.

<table>
<thead>
<tr>
<th>(\beta_{imp})</th>
<th>(m_0(\text{MeV}))</th>
<th>(\tilde{c})</th>
<th>(\Lambda(\text{GeV}))</th>
<th>(\tilde{c}\Lambda(\text{GeV}))</th>
<th>(\tilde{c})</th>
<th>(\Lambda(\text{GeV}))</th>
<th>(\tilde{c}\Lambda(\text{GeV}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.76</td>
<td>11.5</td>
<td>0.44(1)</td>
<td>0.87(2)</td>
<td>0.38</td>
<td>0.45(1)</td>
<td>0.91(2)</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>82.2</td>
<td>0.30(1)</td>
<td>1.45(2)</td>
<td>0.43</td>
<td>0.33(1)</td>
<td>1.36(1)</td>
<td>0.46</td>
</tr>
<tr>
<td>6.83</td>
<td>65.7</td>
<td>0.33(1)</td>
<td>1.28(2)</td>
<td>0.42</td>
<td>0.35(1)</td>
<td>1.25(1)</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>82.2</td>
<td>0.30(1)</td>
<td>1.45(2)</td>
<td>0.43</td>
<td>0.33(1)</td>
<td>1.34(1)</td>
<td>0.45</td>
</tr>
<tr>
<td>7.09</td>
<td>13.6</td>
<td>0.45(1)</td>
<td>0.82(2)</td>
<td>0.37</td>
<td>0.50(2)</td>
<td>0.79(2)</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>68.0</td>
<td>0.30(1)</td>
<td>1.27(4)</td>
<td>0.38</td>
<td>0.35(1)</td>
<td>1.19(1)</td>
<td>0.41</td>
</tr>
<tr>
<td>7.11</td>
<td>27.2</td>
<td>0.43(1)</td>
<td>0.89(2)</td>
<td>0.38</td>
<td>0.20(2)</td>
<td>1.04(3)</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>68.0</td>
<td>0.32(1)</td>
<td>1.23(2)</td>
<td>0.40</td>
<td>0.36(1)</td>
<td>1.15(1)</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Fig. 13: The mass function $M(q)$ of the Asqtad action of MILC$_f$ with the bare quark mass $m_0 = 13.6\text{MeV}$ (green stars) and with the bare quark mass $m_0 = 68\text{MeV}$ (red diamonds).

Fig. 14: The chiral symmetry breaking mass $\bar{c}\Lambda$ as a function of bare mass and its chiral limit. Dotted line is an extrapolation of MILC$_f$ and the dash-dotted line is that of MILC$_c$, Asqtad action.
VIII. Summary and Discussion

- The Kugo-Ojima parameter c saturated at about 0.8 in the quenched 56^4 lattice, but it is consistent with 1 in the zero temperature MILC configurations.
- The quark has the effect of quenching randomness.
- The condensate parameter v in the color anti-symmetric ghost propagator in quenched SU(2) is consistent with 0 and also small in MILC$_c$ and MILC$_f$.
- The Binder cumulants of zero temperature MILC are close to those of Gaussian distributions except the lowest momentum point.
- The Binder cumulants of MILC finite temperature ($T > T_c$) show larger randomness than those of Gaussian distributions.
• The gluon propagator is infrared finite?

• Kugo-Ojima confinement criterion

\[\frac{Z_1}{Z_3} = \frac{o((q^2)^{-\alpha_D+s})}{O((q^2)^{-\alpha_D})} \quad [s > 0]? \]

\[\frac{Z_1}{Z_3} = \frac{1}{\infty} \]

\[\frac{Z_1^\psi}{Z_2} = \frac{o((q^2)^s)}{O(1)} \quad [s > 0]? \]

• How does the true vacuum manifest itself in the \(V \rightarrow \) limit of the simulation?
References

