Infrared features of the ghost propagators in quenched and unquenched lattice Landau gauge QCD

Hideo Nakajima, * Department of Information science, Utsunomiya University Sadataka Furui, [†] School of Science and Engineering, Teikyo University

31 October 2006, JPS APS joint meeting

*e-mail nakajima@is.utsunomiya-u.ac.jp [†]e-mail furui@umb.teikyo-u.ac.jp

Contents

- I. Introduction
- II. Color confinement
- III. The lattice Landau gauge
- IV. The Kugo-Ojima theory and the Zwanziger theory
- V. The ghost propagator
- VI. Summary and discussion

References: Phys. Rev. **D73**, 094506(2006), **D73**, 074503(2006), **D70**, 094504(2004), **D69**, 074505(2004), Few Body Systems42(2006): hep-lat/0503029 Brazilian Journal of Physics (IRQCD in Rio)(2006), hep-lat/0609024

I. Introduction

- Unquenched lattice Landau gauge simulation using MILC Asqtad Kogut-Susskind fermions.
- Color confinement
 - The Kugo-Ojima confinement parameter c.
 - A^2 condensate in running coupling, gluon propagator and quark propagator.
 - Ghost condensate parameter v and Binder cumulant of the color anti-symmetric ghost propagator.
- Dynamical chiral symmetry breaking

II. Color Confinement

- Kugo-Ojima theory based on the Lagrangian satisfying BRST symmetry yields a confinement criterion (A two-point function at q = 0). (Kugo-Ojima 1979)
- Gribov-Zwanziger theory gives a sufficient condition of the confinement for infrared exponents of gluon propagator and ghost propagator.(Gribov 1978, Zwanziger 1991)
- The lattice simulation of running coupling $\alpha_s(q)$ in MOM scheme suggests presence of mass-dimension 2 (A^2) condensates.(Boucaud et al. 2000)

- The mass-dimension 2 condensates can be related to Zwanziger's horizon condition generated by restriction of the gauge field in fundamental modular region.(Dudal et al. 2005)
- The A^2 is not BRST invariant. A mixed condensate with $\overline{c}c$ becomes on-shell BRST invariant.(Kondo 2003)
- Local Composite Operator(LCO) approach suggests that $\bar{c}c$ condensate manifest itself in the color anti-symmetric ghost propagator. (Dudal et al. 2005)
- Investigation of the ghost condensate in SU(2) lattice Landau gauge was performed.(Cucchieri et al. 2005)

• The Kugo-Ojima confinement criterion:

$$(\delta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2})u^{ab}(q^2) = \frac{1}{V}\sum_{x,y} e^{-ip(x-y)} \langle \operatorname{tr} \left(\Lambda^{a\dagger} D_{\mu} \frac{1}{-\partial D} [A_{\nu}, \Lambda^b]\right)_{xy} \rangle.$$

The fact that the parameter c defined as $u^{ab}(0) = -\delta^{ab}c$ becomes 1 is the confinement criterion.

 \bullet The parameter c is related to the renormalization factor as

$$1 - c = \frac{Z_1}{Z_3} = \frac{\tilde{Z}_1}{\tilde{Z}_3} = \frac{Z_1^{\psi}}{Z_2}$$

• If the finiteness of \tilde{Z}_1 is proved, divergence of \tilde{Z}_3 is a sufficient condition. If Z_3 vanishes in the infrared, Z_1 should have higher order 0. If Z_2 is finite Z_1^{ψ} should vanish.

• Zwanziger's horizon condition

$$\sum_{x,y} e^{-ip(x-y)} \left\langle \operatorname{tr} \left(\Lambda^{a\dagger} D_{\mu} \frac{1}{-\partial D} (-D_{\nu}) \Lambda^{b} \right)_{xy} \right\rangle$$

$$= G_{\mu\nu}(p)\delta^{ab} = \left(\frac{e}{d}\right)\frac{p_{\mu}p_{\nu}}{p^2}\delta^{ab} - \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right)u^{ab},$$

where, with use of the covariant derivativative $D_{\mu}(U)$

$$D_{\mu}(U_{x,\mu})\phi = S(U_{x,\mu})\partial_{\mu}\phi + [A_{x,\mu},\bar{\phi}],$$
$$\partial_{\mu}\phi = \phi(x+\mu) - \phi(x), \text{ and } \bar{\phi} = \frac{\phi(x+\mu) + \phi(x)}{2}$$
$$e = \left\langle \sum_{x,\mu} \operatorname{tr}(\Lambda^{a\dagger}S(U_{x,\mu})\Lambda^{a}) \right\rangle / \{(N_{c}^{2}-1)V\}.$$

- The horizon condition reads $\lim_{p\to 0} G_{\mu\mu}(p) e = 0$, and the l.h.s. of the condition is $\left(\frac{e}{d}\right) + (d-1)c e = (d-1)h$ where $h = c \frac{e}{d}$ and dimension d = 4, and it follows that $h = 0 \rightarrow$ horizon condition, and thus the horizon condition coincides with Kugo-Ojima criterion provided the covariant derivative approaches the naive continuum limit, i.e., e/d = 1.
- The renormalization group flow of the ghost propagator is assumed to follow perturbative renormalization-group flow equation.
- Suppression of the infrared modes of the gauge field corresponds to the vanishing of the gluon propagator.

III. The lattice Landau gauge

• Two types of the gauge field definitions:

1. log U type:
$$U_{x,\mu} = e^{A_{x,\mu}}, A_{x,\mu}^{\dagger} = -A_{x,\mu},$$

2. U linear type:
$$A_{x,\mu} = \frac{1}{2} (U_{x,\mu} - U_{x,\mu}^{\dagger})|_{trlp.}$$
,

$$(A_{\mu}(x) = i \sum_{a} A_{\mu}{}^{a}(x) \frac{\Lambda^{a}}{\sqrt{2}}, \quad \text{tr}\Lambda^{a}\Lambda^{b} = \delta^{ab})$$

- The optimizing function
 - 1. $F_U(g) = ||A^g||^2 = \sum_{x,\mu} tr \left(A^g_{x,\mu}^{\dagger} A^g_{x,\mu} \right)$,

2.
$$F_U(g) = \sum_{x,\mu} \operatorname{tr} \left(2 - (U_{x,\mu}^g + U_{x,\mu}^g^\dagger) \right),$$

• Under infinitesimal gauge transformation $g^{-1}\delta g = \epsilon$, its variation reads for either definition as

$$\Delta F_U(g) = -2\langle \partial A^g | \epsilon \rangle + \langle \epsilon | - \partial D(U^g) | \epsilon \rangle + \cdots,$$

 Stationality(Landau gauge), Local minimum(Gribov Region), Global minimum(Fundamental modular(FM) region) Kugo-Ojima parameter c of quenched SU(3)

U-linear(left) and log U(right). $\beta = 6.0$ and 6.4.

eta	L	c_1	e_1/d	h_1	c_2	e_2/d	h_2
6.0	16	0.576(79)	0.860(1)	-0.28	0.628(94)	0.943(1)	-0.32
6.0	24	0.695(63)	0.861(1)	-0.17	0.774(76)	0.944(1)	-0.17
6.0	32	0.706(39)	0.862(1)	-0.15	0.777(46)	0.944(1)	-0.16
6.4	32	0.650(39)	0.883(1)	-0.23	0.700(42)	0.953(1)	-0.25
6.4	48	0.739(65)	0.884(1)	-0.15(7)	0.793(61)	0.954(1)	-0.16
6.4	56	0.758(52)	0.884(1)	-0.13(5)	0.827(27)	0.954(1)	-0.12
6.45	56				0.814(89)	0.954(1)	-0.14

MILC configurations used in our simulation

	eta_{imp}	am_{ud}^{VWI}/am_s^{VWI}	N_f	1/a(GeV)	L_s	L_t	$aL_s(fm)$
$MILC_c$	6.83	0.040/0.050	2+1	1.64	20	64	2.41
	6.76	0.007/0.050	2+1	1.64	20	64	2.41
$MILC_f$	7.11	0.0124/0.031	2+1	2.19	28	96	2.52
	7.09	0.0062/0.031	2+1	2.19	28	96	2.52
$MILC_{ft}$	5.65	0.008	2	1.716	24	12	2.76
Ŭ	5.725	0.008	2	1.914	24	12	2.47
	5.85	0.008	2	2.244	24	12	2.11

The Kugo-Ojima parameter of unquenched SU(3)

Table 1:The Kugo-Ojima parameter for the polarization along the spacial directions c_x and that along the time direction c_t and the average c, trace divided by the dimension e/d, horizon function deviation h of the unquenched KS fermion (MILC_c, MILC_f, MILC_{ft}) with use oflog U definition.

	eta_{imp}	c_x	c_t	c	e/d	h
$MILC_c$	6.76	1.04(11)	0.74(3)	0.97(16)	0.9325(1)	0.03(16)
	6.83	0.99(14)	0.75(3)	0.93(16)	0.9339(1)	-0.00(16)
$MILC_{f}$	7.09	1.06(13)	0.76(3)	0.99(17)	0.9409(1)	0.04(17)
· ·	7.11	1.05(13)	0.76(3)	0.98(17)	0.9412(1)	0.04(17)
$MILC_{ft}$	5.65	0.72(13)	1.04(23)	0.80(21)	0.9400(7)	-0.14
·	5.725	0.68(15)	0.77(16)	0.70(15)	0.9430(2)	-0.24
	5.85	0.63(19)	0.60(12)	0.62(17)	0.9465(2)	-0.33

Fig. 1: Kugo-Ojima parameter u(0) of MILC_f $N_f = 2 + 1$ KS fermion unquenched configurations of $\beta_{imp} = 7.11$ (green diamonds), $\beta_{imp} = 7.09$ (red stars). Fig. 2: Kugo-Ojima parameter u(0)of MILC finite temperature configurations of $\beta = 5.65$ (blue diamonds), $\beta = 5.725$ (red stars) and $\beta = 5.85$ (green triangles).

13

IV. The Ghost propagator $FT[D_G^{ab}(x,y)] = FT\langle tr(\Lambda^a \{ (\mathcal{M}[U])^{-1} \}_{xy} \Lambda^b \rangle,$ $= \delta^{ab} D_G(q^2),$ $\mathcal{M} = -\partial_\mu D_\mu.$

- Ghost dressing function $G(q^2) = q^2 D_G(q^2)$.
- Solve the equation with plane wave sources.

$$-\partial_{\mu}D_{\mu}f_{s}^{b}(\mathbf{x}) = \frac{1}{\sqrt{V}}\Lambda^{b}\sin\mathbf{q}\cdot\mathbf{x}$$
(1)

$$-\partial_{\mu}D_{\mu}f_{c}^{b}(\mathbf{x}) = \frac{1}{\sqrt{V}}\Lambda^{b}\cos\mathbf{q}\cdot\mathbf{x}.$$
 (2)

14

• Color diagonal ghost propagator

$$D_{G}(q) = \frac{1}{N_{c}^{2} - 1} \frac{1}{V} \times \delta^{ab} (\langle \Lambda^{a} \cos \mathbf{q} \cdot \mathbf{x} | f_{c}^{b}(\mathbf{x}) \rangle + \langle \Lambda^{a} \sin \mathbf{q} \cdot \mathbf{x} | f_{s}^{b}(\mathbf{x}) \rangle)$$
(3)

• Color anti-symmetric ghost propagator

$$\phi^{c}(q) = \frac{1}{N} \frac{1}{V} \times f^{abc}(\langle \Lambda^{a} \cos \mathbf{q} \cdot \mathbf{x} | f_{s}^{b}(\mathbf{x}) \rangle - \langle \Lambda^{a} \sin \mathbf{q} \cdot \mathbf{x} | f_{c}^{b}(\mathbf{x}) \rangle)$$
(4)

where $\mathcal{N} = 2$ for SU(2) and 6 for SU(3).

Fig. 3: Log of the ghost dressing function $\log_{10} G(q)$ as a function of $\log_{10} q$ (GeV) of MILC_f $\beta_{imp} = 7.09$ (diamonds) and that of quenched $\beta = 6.45 56^4$ (stars).

Fig. 4: The ghost dressing function of MILC_f $\beta_{imp} = 7.09$ (stars) Dashed line is the 4-loop $N_f = 2$ pQCD result ($\lambda_G = 3.01, y = 0.0246100$)

Fig. 5: Log of the color diagonal ghost propagator of $\log_{10}[D_G(q)]$ as a function of $q(\text{GeV})\text{MILC}_c$.

Fig. 6: Log of the color antisymmetric ghost propagator squared $\log_{10}[\phi(q)^2]$ as a function of q(GeV). $20^3 \times 64 \text{ MILC}_c$.

The ghost condensate

- The ghost condensate $\langle f^{abc}\overline{c}^bc^c\rangle$ in the color anti-symmetric ghost propagator is parametrized by v, r and z.
- Expression of the finite size effect in the $L_x^3 L_t$ lattice for q_μ under cylinder cut is difficult. Our choice is,

$$\frac{1}{N_c^2 - 1} \sum_a \frac{\sqrt{L_x^3 L_t}}{\cos(\pi \tilde{q}/8\sqrt{L_x L_t})} \langle |\phi^a(q)| \rangle = \frac{r}{q^z}, \tag{5}$$

$$\tilde{q}^2 = \sum_{i=1}^3 (2\sin\frac{\pi\bar{q}_i}{L_x})^2 + (2\sin\frac{\pi\bar{q}_4}{L_t})^2 \tag{6}$$

$$\frac{1}{N_c^2 - 1} \sum_{a} \langle |\phi^a(q)| \rangle = \frac{r/\sqrt{L_x^3 L_t} + v}{q^4 + v^2} \tag{7}$$

18

Fig. 7: The logarithm of the color antisymmetric ghost propagator of MILC_f as the function of $\log_{10}(q(\text{GeV}))$ and the fit using r = 134 and $v = 0.026 \text{GeV}^2$.

Fig. 8: The logarithm of the color antisymmetric ghost propagator of MILC_{ft} of T = 143MeV(blue diamonds), T = 159.5MeV (red stars) and T = 187MeV (green triangles) and their fits.

The Binder cumulant

• Binder cumulant of the color antisymmetric ghost propagator

$$U(q) = 1 - \frac{\langle \vec{\phi}(q)^4 \rangle}{3 \langle \vec{\phi}(q)^2 \rangle^2}.$$

• Suppression away from the d-dimensional gaussian distribution $\frac{\langle \vec{\phi}^4 \rangle}{(\langle \vec{\phi}^2 \rangle)^2} = \frac{d+2}{d}$ may imply presence of ghost condensate.

• Quenched SU(2) is compatible with gaussian. MILC_c shows a larger randomness than the Gaussian.

Fig. 9: The momentum dependence of Binder cumulant U(q) of SU(2), $\beta = 2.2$, $a = 1.07 \text{GeV}^{-1}$ of PT samples(blue triangles) and first copy samples(green diamonds).

Fig.10: The momentum dependence of Binder cumulant U(q) of unquenched SU(3), $a = 1.64 \text{GeV}^{-1}$ MILC_c.

Exceptional samples

- In $\beta = 6.4,56^4$ quenched SU(3) configurations, we found a copy whose $\alpha_G = 0.272$ v.s. α_G (average)=0.223, and whose gluon propagator has an axis along which the reflection positivity is manifestly violated.
- In the $\beta_{imp} = 6.76, 20^3 \times 64$ MILC_c configurations (21 samples), we find a similar exceptional sample.
- The exceptional sample makes the sample average of the Binder cumulant of color anti-symmetric ghost propagator in the infrared small, and the standard deviation large.

Fig.11: The Binder cumulant of the color antisymmetric ghost propagator of MILC_{ft} $N_f = 2$ configurations of $\beta = 5.725$ (red stars)

Fig.12:Averages over momenta excluding the lowest momentum point of the Binder cumulants of MILC finite temperature configurations. $\beta = 5.65$ (blue diamonds), $\beta = 5.725$ (red stars) and $\beta = 5.85$ (green triangles). • The fitted parameters r, z, v of $|\phi(q)|$, $\bar{r}, \bar{z}, \bar{v}$ of $\phi(q)^2$ and U of MILC_c and MILC_f samples. (U of MILC_f corresponds to the average below q = 1GeV and the average above 1GeV, respectively)

eta_{imp}	$m_0({\sf MeV})$	r	z	v	\overline{r}	\overline{z}	\overline{v}	U
6.76	11.5/82.2	37.5	3.90	0.012	33.5	7.6	0.045	0.53(5)
6.83	65.7/82.2	38.7	3.85	0.007	33.5	7.6	0.048	0.57(4)
7.09	13.6/68.0	134	3.83	0.026	251	7.35	0.044	0.57(4)/0.56(1)
7.11	27.2/68.0	112	3.81	0.028	164	7.34	0.002	0.58(2)/0.52(1)

• The data of MILC_f $\beta_{imp} = 7.11$ are rather noisy. U(q) below 1GeV and above 1GeV are different. The anomaly is correlated with that of the dynamical quark mass function.

The infrared exponents of ghost and gluon

	eta/eta_{imp}	$lpha_G$	α_D	$\alpha_D + 2\alpha_G$
quench	6.40	0.22	-0.32	0.12
$MILC_c$	6.76	0.25	-0.60	-0.10
	6.83	0.23	-0.57	-0.11
$MILC_{f}$	7.09	0.24	-0.67	-0.19
J	7.11	0.23	-0.65	-0.19

VII. The quark propagator

• The statistical average over Landau-gauge-fixed samples

$$S_{\alpha\beta}(p) = \left\langle \langle \chi_{p,\alpha} | \frac{1}{i \not D(U) + m} | \chi_{p,\beta} \rangle \right\rangle$$

The inversion, $\frac{1}{i \not D(U) + m}$, is performed via conjugate gradient method after preconditioning.

$$S_{\alpha\beta}(q) = Z_2(q) \frac{-i\gamma q + M(q)}{q^2 + M(q)^2}$$

• The mass function in large q.

$$\begin{split} M(q) &= -\frac{4\pi^2 d_M \langle \bar{\psi}\psi \rangle_\mu [\log(q^2/\Lambda_{QCD}^2)]^{d_M - 1}}{3q^2 [\log(\mu^2/\Lambda_{QCD}^2)]^{d_M}} \\ &+ \frac{m(\mu^2) [\log(\mu^2/\Lambda_{QCD}^2)]^{d_M}}{[\log(q^2/\Lambda_{QCD}^2)]^{d_M}}, \\ d_M &= 12/(33 - 2N_f) \end{split}$$

• The mass function in the infrared region.

$$M(q) = \frac{\tilde{c}\Lambda^3}{q^2 + \Lambda^2} + m_0$$

The mass function

The parameters \tilde{c} and Λ of the Staple+Naik action(left) and the Asqtad action.

eta_{imp}	$m_0(MeV)$	$ ilde{c}$	$\Lambda(\text{GeV})$	$\tilde{c} \Lambda(GeV)$	$ ilde{c}$	$\Lambda(\text{GeV})$	$\tilde{c} \Lambda(GeV)$
6.76	11.5	0.44(1)	0.87(2)	0.38	0.45(1)	0.91(2)	0.41
	82.2	0.30(1)	1.45(2)	0.43	0.33(1)	1.36(1)	0.46
6.83	65.7	0.33(1)	1.28(2)	0.42	0.35(1)	1.25(1)	0.44
	82.2	0.30(1)	1.45(2)	0.43	0.33(1)	1.34(1)	0.45
7.09	13.6	0.45(1)	0.82(2)	0.37	0.50(2)	0.79(2)	0.39
	68.0	0.30(1)	1.27(4)	0.38	0.35(1)	1.19(1)	0.41
7.11	27.2	0.43(1)	0.89(2)	0.38	0.20(2)	1.04(3)	0.21
	68.0	0.32(1)	1.23(2)	0.40	0.36(1)	1.15(1)	0.42

Fig.13: The mass function M(q) of the Asqtad action of MILC_f with the bare quark mass $m_0 = 13.6$ MeV (green stars) and with the bare quark mass $m_0 = 68$ MeV (red diamonds).

Fig.14: The chiral symmetry breaking mass $\tilde{c}\Lambda$ as a function of bare mass and its chiral limit. Dotted line is an extrapolation of MILC_f and the dash-dotted line is that of MILC_c, Asqtad action.

VIII. Summary and Discussion

- The Kugo-Ojima parameter c saturated at about 0.8 in the quenched 56⁴ lattice, but it is consistent with 1 in the zero temperature MILC configurations.
- The quark has the effect of quenching randomness.
- The condensate parameter v in the color anti-symmetric ghost propagator in quenched SU(2) is consistent with 0 and also small in MILC_c and MILC_f.
- The Binder cumulants of zero temperature MILC are close to those of Gaussian distributions except the lowest momentum point.
- The Binder cumulants of MILC finite temperature $(T > T_c)$ show larger randomness than those of Gaussian distributions.

- The gluon propagator is infrared finite?
- Kugo-Ojima confinement criterion

$$* \frac{Z_1}{Z_3} = \frac{o((q^2)^{-\alpha_D + s})}{O((q^2)^{-\alpha_D})} \quad [s > 0]?$$

$$* \frac{\tilde{Z}_1}{\tilde{Z}_3} = \frac{1}{\infty}$$

$$* \frac{Z_1^{\psi}}{Z_2} = \frac{o((q^2)^s)}{O(1)} \quad [s > 0]?$$

• How does the true vacuum manifest itself in the $V \rightarrow$ limit of the simulation?

References

[1] T. Kugo and I. Ojima, Prog. Theor. Phys. Suppl. **66**, 1 (1979).

[2] V.N. Gribov, Nucl. Phys. **B** 1391(1978).

[3] D. Zwanziger, Nucl. Phys. **B 364**,127 (1991), idem B **412**, 657 (1994).

[4] P.O. Bowman et al., Phys. Rev. D71,054507(2005).

[5] A. Cucchieri, Nucl. Phys. **B521**,365(1998).

[6] A. Cucchieri, T. Mendes and A. Mihara, Phys. Rev. D72,094505(2004).

[7] Ph. Boucaud et al., hep-lat/0504017.

[8] S. Furui and H.Nakajima, Phys. Rev. D**69**,074505(2004), hep-lat/0305010.

[9] S. Furui and H.Nakajima, Phys. Rev. D**70**,094504(2004), hep-lat/0403021.

[10] S. Furui and H. Nakajima, Few Body Systems**42**(2006), hep-lat/0503029.

[11] H. Nakajima and S. Furui, PoS **LAT2005** 302 (2005),heplat/0509033.

[12] S. Furui and H. Nakajima, PoS **LAT2005** 291 (2005),heplat/0509035.

[13] S. Furui and H. Nakajima, Phys. Rev. D**73**,074503(2006),heplat/0511045.

[14] S. Furui and H. Nakajima, Phys. Rev. D**73**,094506(2006),heplat/0602027.