

DPF+JPS Joint Meeting

October 29 - November 3, 2006

Studies of charmed baryon productions and decays at Belle

Alexey Garmash

Princeton University

(on behalf of the Belle Collaboration)

Besides being a B-factory KEKB/Belle provides an excellent laboratory to study (charmed) baryons:

More than 20 (>10% of the total number of) published papers are on processes with baryons in the final state. This includes:

- @ 5 papers on B decays to final states with charmed baryons
- @ 3 papers on studies of charmed baryon properties

In this presentation:

Observation of Σ_c(2800)
 Observation of new states decaying into Λ_c⁺K⁻π⁺ and Λ_c⁺K_sπ⁻
 Measurement of the Ξ_c(2645) and Ξ_c(2815) masses

/* Λ_c^+ (2940) and study of the Λ_c^+ (2880)

KEKB & Belle

Charmed Baryons @ Belle

Alexey Garmash

Honolulu Oct. 29 - Nov. 3, 2006

- Observation of $\Sigma_{c}(2800)$
- Observation of new states decaying into $\Lambda_c^{+}K^{-}\pi^{+}$ and $\Lambda_c^{+}K_{S}\pi^{-}$
- Measurement of the $\Xi_c(2645)$ and $\Xi_c(2815)$ masses
- $\Lambda_c^+(2940)$ and study of the $\Lambda_c^+(2880)$

Σ_c (2800): Observation

 $M(\Lambda_c^+\pi) - M(\Lambda_c^+), \ {
m GeV}/c^2$

NEW CHARMED ISOTRIPLET!

PRL 94, 122002, 2005

State	Yield /10 ³	$\Delta M, \ { m MeV}/c^2$	Γ , MeV
$\Sigma_{c}(2800)^{0}$	$2.24_{-0.55-0.50}^{+0.79+1.03}$	$515.4^{+3.2}_{-3.1}{}^{+2.1}_{-6.0}$	$61^{+18}_{-13}{}^{+22}_{-13}$
$\Sigma_{c}(2800)^{+}$	$1.54^{+1.05}_{-0.57}^{+1.40}_{-0.88}$	$505.4^{+5.8}_{-4.6}^{+12.4}_{-2.0}$	$62^{+37}_{-23}{}^{+52}_{-38}$
$\Sigma_{c}(2800)^{++}$	$2.81^{+0.82}_{-0.60}{}^{+0.71}_{-0.49}$	$514.5^{+3.4}_{-3.1}{}^{+2.8}_{-4.9}$	$75^{+18}_{-13}{}^{+12}_{-11}$

•

Charmed Baryons @ Belle

Alexey Garmash

Honolulu Oct. 29 - Nov. 3, 2006

⁵

$\sum_{c} \Sigma_{c}$ (2800): Continuum Production

Scaled momentum distribution:

 $\Sigma_c(2800) \times_P$ distribution is typical for charmed particle produced in $e^+e^- \rightarrow cc$ continuum events

Charmed Baryons @ Belle

Alexey Garmash

Theoretical models predict a rich spectrum of excited charmed baryons in the vicinity of the Σ_c (2800) [L.A.Copley, N.Isgur and G.Karl, Phys. Rev D 20, 768 (1979)].

Possible candidate is a Σ_{c2} with $J^{P}=3/2^{-1}$ and $5/2^{-1}$ (subscript 2 denotes the total angular momentum of light diquark.) Σ_{c2} is expected to decay exclusively into $\Lambda_{c}^{+}\pi$ in D-wave.

The predicted mass is close to the measured but the expected width is only 15 MeV.

However, Σ_{c2} (3/2⁻) can mix with the nearby Σ_{c1} (3/2⁻) resulting in a wider physical state.

3.00

- Observation of Σ_{c} (2800)
- Observation of new states decaying into $\Lambda_c^{+}K^{-}\pi^{+}$ and $\Lambda_c^{+}K_{S}\pi^{-}$
- Measurement of the $\Xi_c(2645)$ and $\Xi_c(2815)$ masses
- $\Lambda_c^+(2940)$ and study of the $\Lambda_c^+(2880)$

$\sum_{\text{BELLE}} \text{Observation of } \Xi_{cx}(2980) \& \Xi_{cx}(3077)$

Search for SELEX State $\Xi_{cc}(3520)$

SELEX: PRL 89, 112001 (2002) Belle: PRL 97, 162001 (2006)

With 835360±13748 reconstructed $\Lambda_c^+ \rightarrow pK^-\pi^+$ decays

 $\sigma(\Xi_{cc}(3520)^+) \times \mathcal{B}(\Xi_{cc}(3520)^+ \to \Lambda_c^+ K^- \pi^+) \mid p^*(\Lambda_c^+) > 2.5 \,\mathrm{GeV}/c$ $< 1.5 \times 10^{-4} @ 90\%$ C.L. $\sigma(\Lambda_c^+) \mid p^*(\Lambda_c^+) > 2.5 \,\mathrm{GeV}/c$

No signal of the $\Xi_{cc}(3520)^+ \rightarrow \Lambda_c^+ K^- \pi^+$ in e^+e^- annihilations is observed by Belle

Charmed Baryons @ Belle

- Observation of $\Sigma_{c}(2800)$
- Observation of new states decaying into $\Lambda_c^{+}K^{-}\pi^+$ and $\Lambda_c^{+}K_{S}\pi^-$
- Measurement of the $\Xi_c(2645)$ and $\Xi_c(2815)$ masses
- $\Lambda_c^+(2940)$ and study of the $\Lambda_c^+(2880)$

Measurement of the Ξ_c (2645) Mass

 $m_{\Xi_c(2645)^0} = (2645.6 \pm 0.2 (\text{stat})^{+0.6}_{-0.7} (\text{syst})) \text{ MeV}/c^2$

 $m_{\Xi_c(2645)^+} - m_{\Xi_c(2645)^0} = (-0.2 \pm 0.3 ({
m stat}) \pm 0.7 ({
m syst})) \ {
m MeV}/c^2$

 2646.1 ± 1.2

Charmed Baryons @ Belle

Measurement of the Ξ_c (2815) mass

Is the second peak a signal of $\Xi_{cx}(2980) \rightarrow \Xi_{c}(2645)\pi$? \Rightarrow further study is needed

- Observation of $\Sigma_{c}(2800)$
- Observation of new states decaying into $\Lambda_c^{+}K^{-}\pi^{+}$ and $\Lambda_c^{+}K_{S}\pi^{-}$
- Measurement of the $\Xi_c(2645)$ and $\Xi_c(2815)$ masses
- Λ_c^+ (2940) and study of the Λ_c^+ (2880)

Charmed Baryons @ Belle

Alexey Garmash

Honolulu Oct. 29 - Nov. 3, 2006 15

Λ_c (2880): Mass Measurement II

Q Apply requirement $\cos\theta_h > 0$

@ Fit the M($\Sigma_c(2455)\pi$) spectrum

Significance of the $\Lambda_c(2940)^+$ signal is 5.6 σ (5.1 σ with systematic)

	ELIMIN.	Yield	Mass, MeV/c^2	Width, MeV	han ay/0609042
PR	$\Lambda_{c}(2880)^{+}$	$880\pm50\pm40$	$2881.2 \pm 0.2^{+0.4}_{-0.3}$	$5.5^{+0.7}_{-0.3} \pm 0.4$	nep-ex/0606043
	$\Lambda_c(2940)^+$	$210^{+70+100}_{-40-60}$	$2937.9 \pm 1.0^{+1.8}_{-0.4}$	$10 \pm 4 \pm 5$	

BaBar: $\Lambda_c^+ \Rightarrow D^0 p \Rightarrow$

$\Lambda_c(2940)^+$	2280 ± 310	$2939.8 \pm 1.3 \pm 1.0$	$17.5 \pm 5.2 \pm 5.9$
$\Lambda_c(2880)^+$	2800 ± 190	$2881.9 \pm 0.1 \pm 0.5$	$5.8 \pm 1.5 \pm 1.1$

hep-ex/0603052

\Rightarrow Results are consistent

Charmed Baryons @ Belle

$\int_{BELLE} \Lambda_c^{+}(2880) - \lambda_c^{+}\pi^{+}\pi^{-}: \text{Resonant substructure}$

- Release cosθ_h>0 requirement
- Release Σ_c(2455) requirement
- **@** Fit $M(\Lambda_c \pi^+\pi^-)$ in bins of $M(\Lambda_c \pi^\pm)$

Significance of the $\Lambda_c(2880)^+ \rightarrow \Sigma_c(2520)\pi$ signal is 3.7 σ (3 σ with systematic)

	PRL86,4479(2001)	Bell	C Pr
	CLEO	Belle	RELING
$\Gamma(\Sigma_c(2455)\pi^{\pm})/\Gamma(\Lambda_c^+\pi^+\pi^-)$	$(31 \pm 6 \pm 3)\%$	$(39.8 \pm 2.1^{+1.6}_{-0.5})\%$	NAP
$\Gamma(\Sigma_c(2520)\pi^{\pm})/\Gamma(\Lambda_c^+\pi^+\pi^-)$	< 11%	$(9.6 \pm 2.5^{+0.5}_{-1.5})\%$	
$\Gamma(\Sigma_c(2520)\pi^{\pm})/\Gamma(\Sigma_c(2455)\pi^{\pm})$		$(24.1 \pm 6.4^{+1.1}_{-4.5})\%$	

Charmed Baryons @ Belle

•

$Λ_c(2880)^+ → Σ_c π$: Angular Analysis

Many levels \Rightarrow difficult to identify J^P for new states based on M& measurements only \Rightarrow angular analysis is required

$Λ_c(2880)^+ → Σ_c π$: Angular Analysis

$Λ_c(2880)^+ → Σ_c π$: Parity

Quark Model mass prediction:

Capstick, Isgur PRD 34, 2809(1986)

J^P=5/2⁻: M=2900 MeV/c²; M'=3130 MeV/c² J^P=7/2⁻: M=3125 MeV/c² J^P=5/2⁺: M=2910 MeV/c²; M'=3140 MeV/c² J^P=7/2⁺: M=3175 MeV/c²

Heavy Quark Symmetry:

Isgur, Wise PRL 66,1130(1991)

5/2- L=1 s_{light}=1 j_{light} =2 \Rightarrow $\Gamma(\Sigma_c^*\pi) / \Gamma(\Sigma_c\pi) = 7/2 (0.837)^{2^{*2+1}} = 140\%$

5/2+ L=2 s_{light}=0 j_{light} =2 \Rightarrow $\Gamma(\Sigma_c^*\pi) / \Gamma(\Sigma_c\pi) = 4/5 (0.837)^{2^*3+1} = 23\%$

Data: (24 ± 8)%

\Rightarrow HQS favors 5/2⁺ over 5/2⁻ assignment for the $\Lambda_c(2880)$

Charmed Baryons @ Belle • Alexey Garmash • Honolulu Oct. 29 - Nov. 3, 2006 20

Observation of new charmed isotriplet Σ_c(2880)
 Observation of two new charmed baryons decaying into Λ_cKπ Ξ_{cx}(2980) and Ξ_{cx}(3077)

- Precision measurement of the $\Xi_{c}(2645)$ and $\Xi_{c}(2815)$ masses
- Substitution The J^P of the Λ_c(2880)⁺: $\Lambda_{c}(2880)^{+} \rightarrow \Sigma_{c}(2455)\pi \text{ angular analysis } \Rightarrow J = 5/2 \text{ is favored}$ $\Lambda_{c}(2880)^{+} \rightarrow \Lambda_{c}^{+}\pi^{+}\pi^{-} \text{ resonant structure } \Rightarrow J^{P} = 5/2^{+} \text{ is favored}$

- Evidence for $\Lambda_c(2940)^+ \rightarrow \Sigma_c(2455)\pi$
- Measurement of the $\Lambda_c(2880)^+$ and $\Lambda_c(2940)^+$ masses and widths