Recent B \rightarrow K(*) $\ell^+\ell^-$ and B $\rightarrow \pi \ell^+\ell^-$ Results from BaBar

Chris J. Schilling

University of Texas, Austin On behalf of the BaBar Collaboration DPF 2006 Parallel

Flavor Changing Neutral Currents

- Do not occur at tree level in the Standard Model
- Lowest order contributions are penguin loops or box diagrams

Additional new physics contributions are possible

Motivation

- FCNC a well known method to look for new physics
- $b \rightarrow s/d \mid \mid \mid -$ large number of observables to test SM
 - Branching fractions
 - $BF(B^+ \to \pi^+ \ell^+ \ell^-) = 2 \times BF(B^0 \to \pi^0 \ell^+ \ell^-) = 3.3 \times 10^{-8}$
 - One of the rarest searches at BaBar
 - $BF(B \rightarrow K^* \ell^+ \ell^-) \approx 10^{-6}$
 - Partial Branching fractions versus q²
 - Decay rate ratios
 - CP Asymmetries
- For b→d l+l- observables become more significant at higher luminosity
 - Possible branching fraction enhancement from new physics contributions

Motivation

■ For B→K(*)ℓ⁺ℓ⁻ other observables are becoming significant

BaBar Detector and Dataset

Need large statistics to study rare decays

- To date, >400 fb⁻¹ delivered by PEPII,
 ~370 million *B*-pairs recorded by BaBar
- Analyses shown here use 210 fb⁻¹ samples

Analyses exploit BaBar's:

- Good neutral energy resolution
- Charged K/π separation, lepton ID
- Low multiplicity environment, coherent production of B-pairs

Event Reconstruction

- $b \rightarrow d \ell^+ \ell^-$: Reconstruct 4 modes
 - $B \to \pi \ell^+ \ell^- \ (\pi = \pi^+ \text{or } \pi^0)$ $\ell = e \text{ or } \mu, \text{ including LFV (i.e. } e^+ \mu^-)$
- $b \rightarrow s \ell^+ \ell^-$: Reconstruct 8 modes
 - $B \to K\ell^+\ell^- \ (K = K^+ \text{or } K_s)$
 - $\blacksquare B \to K^* \ell^+ \ell^- \ (K^{*0} \to K^+ \pi^- \text{or } K^{*+} \to K_s \pi^+)$
- Electrons
 - Use EM Calorimeter
 - High-quality tracks from IP (~92% efficient, ~0.1% fake rate)
 - Bremsstrahlung recovered
- DIRC and dE/dx used for charged pion/kaon identification (85-90% efficient, ~1-2% fake rate)

- Muons
 - Use BaBar's muon system(IFR)
 - High-quality tracks from IP (~65-70% efficient, 2-3% fake rate)
 - Neutral pions $115 MeV/c^2 < m_{\gamma\gamma} < 150 MeV/c^2$ $E_{\gamma} > 50 MeV$

Reconstruction and Backgrounds

- B meson reconstruction at the Y(4S)
 - $m_{ES} = \sqrt{(E_{beam}^*)^2 |\vec{p}_B^*|^2}$
 - $\Delta E = E_B^* E_{beam}^*$
 - Isotropic event distribution in the center-of-mass frame
- Continuum background: $e^+e^- \rightarrow q\overline{q}$
 - Jet-like event distribution in the centerof-mass frame
 - Use event shape variables to suppress continuum
 - Fisher and likelihood work well to suppress combinatorial backgrounds
 - Fox-Wolfram moments, event thrust angle, Legendre moments

Combinatorial rejection

 Use a Fisher discriminant to reject combinatorial continuum and a likelihood ratio to reject combinatorial bb backgrounds

Peaking Backgrounds

- Peaking Background: (similar m_{ES} , ΔE features)
 - Real leptons: $B \rightarrow J/\psi(\rightarrow \ell^+ \ell)$ events
 - Interfere with penguin signal at rates >10⁴ times signal
 - Provides an extremely clean control sample that is used to cross check Fisher/Likelihood efficiencies and lepton efficiencies in data
 - Hadronic: $B \rightarrow D (\rightarrow \pi \pi \text{ or } K\pi)$ events where pion or kaon fakes the muons.
 - Photon Conversions: $B \rightarrow K^* \gamma (\gamma \rightarrow e^+e^-)$

Charmonium Veto/Control Sample

Veto the *ℓ*⁺*ℓ* invariant mass

Extract signal using a maximum likelihood fit. Total event sample from 229 Million BB pairs.

November 1, 2006

Keter BF/ACP/Rate Results

November 1, 2006

Keter AFB/Angular Results

Upper limit extracted using Cousins-Highland

$\pi \ell^+ \ell^-$ Results

We expect less than 1 event in the signal box for each mode, so a cut-and-count method is used to extract the signal.

π*ℓ*+*ℓ* Results

	Observed	Expected	BF UL
Mode	Events	Background	90% C.L. (10^{-7})
$B^+ \rightarrow \pi^+ e^+ e^-$	1	0.96 ± 0.32	1.72
$B^0 \to \pi^0 e^+ e^-$	0	0.46 ± 0.22	1.29
$B^+ \to \pi^+ \mu^+ \mu^-$	1	0.96 ± 0.30	2.47
$B^0 \to \pi^0 \mu^+ \mu^-$	1	0.35 ± 0.19	4.56
$B^+ \rightarrow \pi^+ e^+ \mu^-$	1	1.48 ± 0.48	1.72
$B^0 \to \pi^0 e^+ \mu^-$	0	1.13 ± 0.47	1.50
$B^+ \to \pi^+ \ell^+ \ell^-$			1.06
$B^0 \to \pi^0 \ell^+ \ell^-$			1.02
$B^+ \to \pi \ell^+ \ell^-$			0.79
$B^0 \to \pi e \mu$			0.98

And combined, assuming: $\mathcal{B}(B^+ \to \pi^+ \ell^+ \ell^-) = 2 \times \frac{\tau_{B^+}}{\tau_{B^0}} \mathcal{B}(B^0 \to \pi^0 \ell^+ \ell^-)$

November 1, 2006

Summary

- Rare B-decays provide an excellent avenue to constrain new physics models.
- For K(*) e⁺e, we measured, Branching Franctions, Decay Rate Ratios and CP Asymmetries consistent with the Standard Model
- A_{FB} measurement in K*ℓ+ℓ is in a regime where we can start ruling out theoretical models.
- We were able to set an Upper Limit on the B-> π II BF. $\mathcal{B}(B \to \pi \ell^+ \ell^-) < 7.9 \times 10^{-8}$
 - This is twice the SM prediction.