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Physics requirements
••Discovery potential of Higgs (into Discovery potential of Higgs (into γγγγ or 4e or 4e  for what concerns for what concerns e/e/γγ  reconstructionreconstruction))
  determines most of the performance requirements.  determines most of the performance requirements.
••Largest possible EM calorimeter acceptance Largest possible EM calorimeter acceptance and uniformityand uniformity..
••Large dynamic range : 20 MeVLarge dynamic range : 20 MeV……2TeV.2TeV.
••Energy resolution (eEnergy resolution (e±±,,γγ): ): σσEE/E ~ 10%//E ~ 10%/√ E√ E  ⊕⊕ 0.7% 0.7%

• → precise EM calorimeter mechanics & electronics calibration (<0.25%)…
••Linearity :Linearity :  < 0.5% for energies above 10 < 0.5% for energies above 10 GeVGeV..

••  → presampler (correct for dead material), layer weighting, electronics calibration
••Position and angular measurements: 50 Position and angular measurements: 50 mrad/mrad/√ E√ E    (H(H→γγ→γγ mass reconstruction). mass reconstruction).

••  →  Fine strips, lateral/longitudinal segmentation of EM calorimeter
••Particle id (Particle id (e/jet e/jet separation): separation): RRjetjet  ~ 10~ 1066 for a pure inclusive electron sample. for a pure inclusive electron sample.

• → fine calorimeter granularity.
• → TR information from Inner Detector.

••Particle id (Particle id (γγ/jet /jet separation): separation): RRjetjet  ~~  5000 for E5000 for ETT > 25  > 25 GeVGeV..
•→ fine calorimeter granularity.
• R(γ/π0) > 3 for 50 GeV pT.

⇒ Choose LAr accordion technology.
•Photon conversion recovery efficiency > 80%.

• → ID tracking/vertexing.
• → E/p to separate from low multiplicity high-pT π0 converted γ.

•Inner detector pT resolution of O(1%)
• → Local ID alignment at ~1µm
• → ID magnetic field known to 0.05% (10G). W-mass precision measurement.
• → ID material understood to ~1% ( for W → e ν mostly).

⇒ Choose mixture of pixels, Si µ-strips and straw tubes for Inner Detector.



LAr EM Calorimeter description 
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 EM Calo (Presampler + 3 layers):
 Presampler 0.025x0.1 (ηηxxφφ)
      ⇒ Energy lost in upstream material
 Strips 0.003x0.1 (ηηxxφφ)
      ⇒ optimal separation of showers in
          non-bending plane, pointing
 Middle 0.025x0.025 (ηηxxφφ))
      ⇒ Cluster seeds
 Back                 0.05x0.025 (ηηxxφφ))
      ⇒ Longitudinal leakage

••LAr-Pb LAr-Pb sampling calorimeter (barrel)sampling calorimeter (barrel)
••Accordion shaped electrodesAccordion shaped electrodes
••Fine longitudinal and transverseFine longitudinal and transverse
    segmentationsegmentation
••EM showers (for eEM showers (for e±± and photons) are and photons) are
    reconstructed using calorimeterreconstructed using calorimeter
    cell-clusteringcell-clustering

Barrel module



The ATLAS Tracker
The Inner Detector (ID) is organized
into four sub-systems:

Pixels
           1 removable barrel layer
           2 barrel layers
           4 end-cap disks on each side
           (0.8 108 channels)

Silicon Tracker (SCT)
           4 barrel layers
           9 end-cap wheels on each side
           (6 106 channels)

Transition Radiation Tracker (TRT)
           Axial barrel straws
           Radial end-cap straws
           36 straws per track
           (4 105 channels)

Common ID items
Barrel

TRT+SCT



MBPS magnet

TRT

LAr

TileCal

Rotatory table

Pixels & SCT

Detector Performance:Combined Test Beam
22M events taken with the full
ID/Calorimeter and validated
by the offline monitoring;
• e+-, π+-, µ, γ
• E scan: 1 - 350 GeV
• B scan: 0 - 1.4 T
• Additional material (η = 1.6):

• Pixel/SCT 12% X/X0
• SCT/TRT 24% X/X0

CTB provides the means for studying detector performance.
Experience gained has had major impact on ATLAS-wide studies:
  …besides the magnitude of the effort on the HW and SW integration…
1. Development of reconstruction/alignment/calibration for real detector;
2. Study of individual detector performance (efficiency, resolutions, noise);
3. Improving the simulation/digitization;
      Good understanding of the above is necessary for moving towards…
4. Combined performance (material effects, particle ID, photon conversions)



EM Calorimeter energy reconstruction
PS      FRONT=S1       MIDDLE=S2     BACK=S3

CLUSTER

EM shower

 24 to 30 X0

1 2 3 4
 0.9X0

Two main clusterization methods:
• Fixed size sliding window:

•3×3, 3×7… cells, 2nd sampling η×φ;
•Some energy left out, especially for small sizes.

• Topological clusters:
•Variable size cluster, minimize noise impact;
•Additional splitting algorithm is also provided.

Corrections for energy losses:

1. Before PS
2. Between PS & Calo
3. Outside cluster: depends

on clustering method
4. After calorimeter:
       ~ Energy in BACK

2-7% overall energy correction
>7% at low energy, high η

Corrections due to cluster
              position:

• Δη (S-shape modulation)
±0.005

• Δφ (offset in accordion)
±0.001



Description of the electrons in the detector:
Data v.s. MCData

MC PS

S2

S1/S2

S1

S3

PS+S1+S2+S3

RATIOS
Data/MC

E=20GeV
-----------------------------
E 1.0    (0.001)
PS 0.993(0.018)
S1 0.992(0.007)
S2 0.995(0.005)
S3 1.014(0.030)
S1/S2 0.997(0.012)
-----------------------------

Good agreement
Up to E = 250 GeV



Reconstructed electron uniformity
245.7 GeV

0.44%
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Standalone, LAr 
Calorimeter test.  

Combined LAr
Calorimeter and 
Inner Detector test. 

Including the whole Inner Detector in front of the LAr calorimeter 
results in no degradation of the reconstructed electron uniformity.

|η|



Energy Calibration
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• Simple method.

• 4-parameters, η-dependent, energy-independent.

• Weights absorb different effects and their energy dependence
  (offset and w0 absorb energy loss upstream the calorimeter, and
  between the presampler and the strips).

• It is not possible to unfold these effects. More complex approach
  relying on detailed understanding of MC under study.

The 4 coefficients are reconstructed via χ2 fit on a sample of single
electrons in a [-2σ,+3σ] range around the most probable value of the
reconstructed energy distribution:



Data
MC

Linearity-electrons

Linearity at the 0.2% level 10 GeV < E < 250 GeV.
Rises to ~1% when the full Inner Detector is placed in front.

Atlas study:
Linearity at the 0.3% level >20 GeV.

Full η-range except barrel end-cap crack

Combined Inner Detector
LAr Calorimeter test.

Low energy bias will be reduced when larger
statistics will be used during weight evaluation



Data
MC

Resolution-electrons

Stochastic Term: 10.2±0.2%
Constant Term: 0.25±0.07%

ATLAS TDR study, barrel EM

Combined Inner Detector
LAr Calorimeter test:

At larger η in barrel, material in front
of EM Calorimeter, increases from 0.4X0

to 1.1X0

⇓
Stochastic term in resolution increases

significantly.



Electrons v.s. Photons

  50GeV
100GeV
200GeV

true

truerec

E

E-E •When photons are calibrated 
  as electrons, significant non-
  linearity is observed.
•At η=0.3, a O(1%) effect.
•Can be checked using test 
  beam data.ATLAS study

Photon-specific calibrations applied 
after particle ID, result in improved 
linearity.

Different calibrations for converted
and unconverted photons necessary.



Electrons v.s. Photons
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•Combined Test Beam photon runs could
 be used to check the photon-specific 
 calibration (equivalent to ATLAS η=0.3).

•Establish the O(1%) effect when using the
 electron calibration.
•Use electrons from converted photons
 during the same photon run to reduce
 systematic errors.
•Compare the photon/electron reconstructed
 energy.
•Apply the photon-specific calibration weights
 and re-evaluate.

•Requires that indeed electron linearity is <0.2%
(as shown by the electron data) 

DATA ONLY:
Bullets: e+e- pairs
Histogram: photons

E(γ)-E(e+e-)=0.6 GeV @ 60 GeV



e/jet Separation

Shower shapes:
• Hadronic leakage
• Width of second sampling
• E37/E77 in middle sampling
• Width in 40 strips
Secondary maxima in strips:
• ΔE = E2ndmax – Emin

• ShowerCore

Adding tracking info:  For 75-80% efficiency, ~105 rejection,
to reject photon conversions and charged pions with EM interaction in Calo.



e/π separation using the Transition Radiation Tracker

• Use Test Beam data to extract the 
  necessary probabilities per straw for
  e/π beams.
• Overall e/π separation yield depends 
  on p. Best results at ~10 GeV.
• For 5 GeV < E < 50 GeV, Rπ>30
  and  εe ~ 90%.

CTB-04 Data

• TRT high threshold hits must be due to x-rays from electrons:
•Use NHT/NLT (normalize to number of straws);
•Likelihood variable (deal with different HT probability):

• Add the time over threshold (ToT) information:
•Depends on track-to-anode distance;
•Remove HT hits to avoid possible correlations:

• Combine the two likelihoods to obtain optimal e/π 
   separation:
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γ/π0 Separation

•After application of hadronic leakage and 2nd EM sampling criteria,
  ~80% of the remaining background is composed of isolated π0 from
  jet fragmentation.     

•The high granularity of the
  first sampling provides the
  required rejection.

•Eff: 90%; R(π0) = 3.2±0.2

•Consistent with TB-2002 

TB 2002 @50 GeV

The tracker is necessary to keep 
R(π0)>3 in the case of converted photons.
Use a cut on E/p after converted photon 

recovery 



γ/jet Separation

Evaluating  with single γ of different energies or from Hγγ

• Rjet ~ 7000 @ 80% efficiency
   and pT > 25 GeV

–3000 on quark jets
–21000 on gluon jets

→ Difference due to softer fragmentation
     function of gluon jets.

• As a fraction of the irreducible
   γγ background:

~ 20% from γ-jet
~ 15% from jet-jet

•Low luminosity: 2×1033 cm-2 s-1

•High luminosity: 1×1034 cm-2 s-1



Photon Conversion Recovery
Depending on η, 30-50%
of produced photons will
convert inside the ID.
Efficient photon conversion 
recovery is essential.

Reconstructed
Truth

η

η

•Start from the TRT reconstructing tracks 
  going backwards into the Si part of ID.
•More efficient recovery of late photon
 conversions inside the ID.
•Conversion recovery efficiency >80%
  for R<80cm from beam line, |η|<2.
•Follows well the ID material distribution.

Atlas study



Photon Conversion Recovery in CTB-2004

Converted photon

Primary Electron






Electron

Up el.

Down el.
Si ID

TRT
Calorimeter

Tracker

Brem tail
•Topological clustering used to
 reconstruct 3 objects in EMC:

– primary e-

– e+e- pair from converted γ

•Step 1:reconstruct conversion
             tracks in ID.
•Step 2:Combine to EM clusters,
             compute E/p.



Conclusions

• Electron and photon ID are essential components of the physics
program at LHC.

• Reconstruction procedures and identification methods are established
and have been tested in both test beam and full detector MC.

• Different algorithms available for clusterization, identification and
calibration.

• Dedicated algorithms for low pT electrons have also been developed.
• Linearity, resolution and identification capabilities approaching

desired specifications.
• Physics with electrons and photons will be ~10 times more

challenging at the LHC than in Tevatron ⇒ requirements on LHC
detectors are more stringent.

• ATLAS barrel Inner Detector and EM Calorimeter are now installed
     and ready to be commissioned together with cosmics in the coming
     months.



The ATLAS detector
being assembled…



Back-up slides



EM Calorimeter cluster corrections

•  η position correction, for layers 1 and 2  ~ 0.4%
•  φ offset correction, for layer 2  ~ 0.2%
• Energy corrections  ~ 2-7%

– Gap correction
– Lateral out-of-cone correction
– Longitudinal corrections
– Overall energy scale

• Energy modulations, vs η and φ ~  0.2%
• Correct for HV problems and pathological cells



In-situ calibration
•The previous calibration schemes demonstrate a small “local” constant term of  ≤0.5% 
 over limited regions of the EM calorimeter. There are 384 such regions 
 (Δη×Δφ=0.2×0.4) in ATLAS. 
•Long range calibration non-uniformities to be resolved in-situ using physics
 samples, such as Z→ee.

• High rate, 1Hz at 1033 cm2 s-1;
• Essentially background free;
• Stand alone method using the Z-mass constraint and no tracker information;
• Z-mass close to other particle masses to be precisely measured, such as W-bosons.

•Inject random mis-calibration coefficients
 with ~2% rms.
•Recover correction coefficients by a log-
 likelihood fit of reconstructed Z-mass to the
 expected Z lineshape.
•From ~70K Z (O(150pb-1)), ~0.4% stat.
 accuracy on intercalibration/region.
•Bias from absorbing wrong dead material
 correction: ~1% effect.

zone| |!

In addition use W→eν isolated electrons
and reconstruct E/p:

• Verify material in tracker and in front of Calo.
• Improve inter-calibration if needed.



e/γ measurements using the Inner Detector

• Calo only + tracking (Inner Detector)  isolated e/γ id
– No track  photon

• Include photon conversions in this sample using specific algorithms

– Matched track  electron.
• Slightly improve resolution by including measured p (brem corrected)
   in electron final energy estimate.
• Reject photon conversions from this sample.

• Low pT electron reconstruction also available for less isolated electrons.
  Start from tracks, add calorimeter information:

– Apply track quality cuts
– Extrapolate to EM calo samplings
– In each sampling look for cell with max E deposit
– Create cluster around that cell
– Estimate discriminating variables
– Physics: b-tagging, B-physics, initial calibration with J/psi to ee


