First Evidence for WZ Production

James Degenhardt October 31st 2006 DPF Meeting Honolulu, Hawaii

- Introduction to WZ physics at hadron colliders.
- Event Selection
- Previous Published Result
- 800 pb⁻¹ Results
- Measuring the coupling strength of *W* boson to *Z* boson.
- Final Remarks

Motivation

- First opportunity to measure exclusive WZ final state.
 - Can only be produced at the Tevatron.
 - Need a charged intermediate state to produce associated *WZ*.
 - Need a large center of mass energy to produce *WZ*.
 - Isolates WWZ coupling.

- SM test and a probe for new physics.
 - SM predicts a cross section of 3.68 ± 0.25 pb.
 - Larger cross section is a manifestation of new physics.

Motivation

- Cleanest signal is from fully leptonic decay (trileptons).
 - Small branching ratio: 0.37% per channel, $1.435 \pm 0.013\%$ for four channels.
 - Smallest backgrounds.

WZ Production Branching Ratios

$$\mathcal{L}_{eff}^{WWZ} = ig_{WWZ} \left(g_1^Z (W_{\mu\nu}^+ W^{-\mu} - W^{+\mu} W_{\mu\nu}^-) Z^{\nu} + \kappa_Z W_{\mu}^+ W_{\nu}^- Z^{\mu\nu} + \frac{\lambda_Z}{m_W^2} W_{\mu}^{+\nu} W_{\nu}^{-\rho} Z_{\rho}^{\mu} \right)$$

- Cross Section analysis also allows to set limits on WZ couplings
- Direct measurement of WWZ triple gauge couplings
- Anomalous couplings are manifestations of new physics

Characterized by effective Lagrangian 3 CP Conserving SM Parameters:

$$\lambda_{Z} = 0$$

$$\Delta \kappa_{Z} = 0 \quad (\Delta \kappa_{Z} = \kappa_{Z} - 1)$$

$$\Delta g^{1}{}_{Z} = 0 \quad (\Delta g^{1}{}_{Z} = g^{1}{}_{Z} - 1)$$

$$\Lambda \text{ is form factor cut off.}$$

- Select 2 leptons

 p_τ > 15 GeV.
- Demand they are within the Z mass window.
 - 50-130 GeV/c² muons
 - 71-111 GeV/c² electrons
- Require MET > 20GeV
- Require at least one more high p_T lepton
- Reject Top events with vector E_T^{HAD} > 50 GeV
 - As measured from the leptons in the event.

7

σ_{WZ} at \sqrt{s} =1.96 GeV is 3.7±0.1 pb

PUBLISHED: PRL 95, 141802 (2005).

Campbell & Ellis

1.8σ significance DØ WZ diboson x-sec. results with 0.3 fb⁻¹

- $\sigma_{WZ} = 4.50 + 3.78 2.56 (stat.) + 0.28$ _{0.23}(sys.) pb
- Upper limit at 95%C.L. 13.3 pb

- Expected 2.04 \pm 0.51 signal events.
- 3.6% probability for background to fluctuate to 3 or more events

Found 3 candidates in 0.3 fb⁻¹

Estimated 0.71 ± 0.08 bkg events.

Previous Published Measurement

James Degenhardt

- Maintain the same kinematic cuts.
- Improved Electron ID.
- Improved Muon Acceptance.
- Expect 7.5 ± 1.5 events.
- Find 12 candidates.

WZ Backgrounds

- Major backgrounds are:
 - Fake objects
 - Drell-Yan
 - ZZ->////
- Background + Expected Signal are in good agreement.

Channel	Background Events
eee	0.96±0.07
eeµ	0.49±0.10
μμe	0.96±0.08
μμμ	1.20±0.14
Total	3.61±0.20

Backgrounds come from Z+X.

X is any of the following....

Lepton fakes a neutrino Estimated using Monte Carlo

WZ Background Sources

Drell-Yan Estimated using Monte Carlo

Results

- Find 12 candidates in 0.8 fb ⁻¹
- Expect 7.5 ± 1.2 events from signal.
- Expect 3.6 ± 0.2 events from background.
- Probability for background to fluctuate to 12 or more events is 4.1x10⁻⁴.
 - This is a 3.3 σ significance.
 - Probability of getting 7 events in one channel is 8.5%.

Decay Channel	# of Candidates	Overall Efficiency	Estimated Background
eee	2	0.16±0.01	0.96±0.07
eeµ	1	0.17±0.03	0.49±0.05
μμε	7	0.18±0.04	0.96±0.08
μμμ	2	0.21±0.03	1.20±0.14
Total	12	-	3.6±0.2

Cross-Section

- Using a log-likelihood method
 - Make likelihood in each channel and combine.
 - Minimum is at 3.98pb
 - 1 σ limits at +1.91 and 1.53
- SM prediction is 3.7±
 0.3 pb.
- $\sigma_{WZ} = 4.0^{+1.9}_{-1.5} \text{ pb}$

WZ Cross Section Log Likelihood

- We can now directly measure the coupling strengths of the W boson to the Z boson.
- Use the effective Lagrangian to set limits on the coupling strengths.
- Excess of events and/or Z boson transverse momentum.

- Once cross section is finalized:
 - Take advantage of the $Z p_T$ spectrum of WZ candidates
 - Improve upon WWZ trilinear couplings measurements at hadron collider.

- We measure the $\sigma_{(WZ)}$ = 4.0 $^{+1.9}_{-1.5}$ pb
- The first time WZ final state has been observed.
- Gives us a direct probe to the weak coupling of the W boson to the Z boson.

Trilinear Gauge Couplings(TGCs)

- Generate a grid in coupling space using Hagiwara-Zeppenfeld-Woodside event generator.[†]
- Simulate the detector response using a fast Monte Carlo program.
- Calculate the Log likelihood at each point giving a surface.
- Find the 1-D & 2-D 95% C.L. Limits on the TGCs
- Once cross section is finalized:
 - Take advantage of the Z p_T spectrum of WZ candidates
 - Improve upon WWZ trilinear couplings measurements at hadron collider.
- ⁺ K. Hagiwara, et al., Phys Rev. D **41**, 2113 (1990).

The DØ Detector

- Essentially the Same analysis as previously
- Kinematic Selection remains the same
- Improved knowledge of detector leads to:
 - Improved muon acceptance.
 - Improved electron ID efficiency.
 - We see 12 candidates in 0.8 fb⁻¹
 - Estimate 3.6 ± 0.2 events from background.
 - Expect 7.5 \pm 1.2 signal events.

Table of signal efficiency × acceptance	
for two analyses	

Channel	0.3 fb ⁻¹	0.8 fb ⁻¹
eee	0.103	0.158
eeµ	0.117	0.167
μμε	0.139	0.175
μμμ	0.163	0.205

Tevatron

Proton anti-proton collider 1.96 TeV with 396ns bunch spacing Delivered Luminosity ~1.4 fb⁻¹

To the DØ Detector

with ~1.2 fb⁻¹ recorded

Tuesday, October 31, 2006