

Measurement of $d\sigma/dp_T (Z / \gamma^* \rightarrow e^+ e^-)$ at D0

Lei Wang University of Maryland DPF2006 Honolulu,Hawaii

10/29/2006

Outline of the Talk

- Motivation
- D0 detector
- $Z / \gamma^* \rightarrow e^+ e^-$ event selection
- Single electron efficiencies
- Monte Carlo simulation
- Background
- Unfolding of detector smearing
- Systematic uncertainty estimate
- Preliminary result and conclusions

Motivation

- Z boson production: QCD $q\bar{q} \rightarrow Z$
- p_T of Z boson : initial state gluon radiation of the colliding partons

- High p_T, perturbative QCD

$$\frac{d^2\sigma}{dp_T^2 dy} \propto \frac{\alpha_w \alpha_s}{p_T^2} \ln\left(\frac{Q^2}{p_T^2}\right) \to \infty \ as \ p_T^2 \to 0$$

Low p_T, soft and collinear gluon resummation

Motivation

- **W(b,Q)** resumming the perturbative series $p_T^{-2} \times [1 \text{ or } \ln(Q^2 / p_T^2)]$ to all orders in α_{s}
- Y(b,Q) diff between the fix order perturbative result and the singular part
- To extend to pT->0 region, where non-perturbative QCD ٠ dominate the production $d\sigma/dp_T^*BR(Z \rightarrow ee) (pb/GeV)$

 $W(b,Q) \to W(b_*,Q)e^{-S_{NP}(b,Q)} \quad b_* \equiv b / \sqrt{1 + (b / b_{max})^2} \le b_{max}$

- **S_{NP}: non-perturbative Sudakov form factor**
- Lindasky-Yuan form: $S_{NP}^{LY}(b,Q^2) = g_1 b^2 + g_2 b^2 \ln(\frac{Q^2}{2Q^2}) + g_1 g_3 b \ln(100x_i x_j)$
- Provide sensitive test of the weak boson production formalism
- Help to reduce theory uncertainty of the precision W mass measurement

35

DØ 1994-1996 ace (Ladinsky-Yuan) $EQ4M g_1=0.11 \ GeV^2 g_2=0.58 \ GeV^2$ $g_2=-1.5 \ GeV^1$

g_-space (Ellis-Veseli) MRSR1 a=0.1 GeV² q_{11im}=4.0 GeV b-space (Davies-Webber-Stirling)

MRSA g ,=0.15 GeV2 g ,=0.4 GeV Fixed-order ($O(\alpha_s^2)$)

25 30 p_r(GeV)

15

Problem: resummation can not describe P_T in semi-inclusive DIS

Solution? Two large logs. Normal resummation handles

$$\frac{1}{\sigma} \frac{d\sigma}{dp_T^2} \simeq \frac{1}{p_T^2} [A_1 \alpha_s \ln(\frac{Q^2}{p_T^2}) + A_2 \alpha_s^2 \ln^3(\frac{Q^2}{p_T^2}) + \dots + A_n \alpha_s^n \ln^{2n-1}(\frac{Q^2}{p_T^2}) + \dots]$$

Normal resumation does not handle $\alpha_s^n \ln^n(1/x)$ terms. Mock this in nonpert part

Small x broadening

10/29/2006

DPF2006, Lei Wang

D0 detector

- Tracking system:
- Silicon microstrip tracker
- Scintillating fiber tracker
- Super conducting solenoid
- Uranium/liquid argon calorimeter

coverage:

Central: |η|<1.1

Endcaps: 1.5<|η|<4.2

Muon detector with toroid

Data Sample and Event Selection

- Data collected in D0 Run II between Oct 2002 and Jan 2006, bad runs removed. $\int Ldt \sim 965 \pm 58 \, pb^{-1}$
- Two high p_T electrons each satisfying:
 - p_T>25 GeV
 - isolated
 - in good region of calorimeter
 - matches typical electron shower shape
 - have a track match
- Invariant mass between [70,110] GeV
- At least one electron fires a single electron trigger

CCCC	CCEC	ECEC	All
23957	30116	9583	63656

TABLE I: Results of event selection

Single Electron Efficiencies

• Tag and probe method

Tag	Tag electron: Passes all single electron requirements		CC	EC
Z/γ* Pass electreg		Electron identification	(99.5 ±0.1)%	(99.1 ±0.1)%
		Trigger	(98.5 ±0.1)%	(97.9 ±0.1)%
Probe electron:		Shower shape	(97.1 ±0.1)%	(96.9 ±0.1)%
Passes loose ele requirements a	s loose electron rements and	Track match	(90.5 ±0.1)%	(61.7 ±0.1)%
check for each selection requiremen		Ţ		

$$\varepsilon = \frac{N_{pass}^{probe}}{N_{All}^{probe}}$$

Their dependence on electron location and P_T are modeled in Monte carlo

Monte Carlo simulation

- Event generator: Resbos(Ladinsky+Yuan)+PHOTOS
- Resbos(hep-ph/9704258):initial state gluon resummation;g1,g2,g3;
- PHOTOS(hep-ph/0506026):final state QED radiation.

Detector response- Parameterized Monte Carlo Simulation

Parameterized Monte Carlo simulation(PMCS): smear electron energy, η and φ position;

Merge nearby photons to electrons;

Apply single electron efficiencies and acceptance cuts.

Energy smearing:

$$E' = \alpha * E_{gen} + \beta$$

$$\frac{\sigma_E}{E} = \sqrt{C^2 + \frac{S^2}{E} + \frac{N^2}{E^2}}$$

$$E_{smear} = E' + x * \sigma_E$$

Parameters(α,β,C) are determined from Z data by comparing invariant mass distribution.

Backgrounds

- QCD backgrounds:
- Main source of backgrounds is QCD background with jets faking electrons. (Di-jet, EM+jet)
- Selection: inverse shower shape cut on the electrons.
- Non-QCD backgrounds: PYTHIA as generator, PMCS as detector smearing

	ε*A	σ*Br(pb)	N(0.968fb ⁻¹)
$Z \rightarrow \tau \tau \rightarrow ee$	0.0025	7	16.7
WW	0.059	0.1	6.2
WZ	0.17	0.009	15.5
Wγ	0.005	12.2	61
the non-QCD backgrounds are negligible			

Background fraction and p_T-shape

• Minimum χ^2 fit: invariant mass of the Z candidates as linear sum of those of signal(MC) and background to get the background fraction

QCD background shape:

Region	χ^2/ndf	background fraction
CCCC	64/80	$1.30{\pm}0.14\%$
CCEC	106/80	$8.55 {\pm} 0.26\%$
ECEC	80/80	$4.71 \pm 0.30\%$
All	111/ 80	$4.70 {\pm} 0.13\%$

Data/MC Comparisons

Put measured efficiency and tuned parameters in the PMCS

DPF2006, Lei Wang

Efficiency*Acceptance Z p_T dependence

Data selection affect Z pT spectrum;

Jet activity affect the isolation of the electrons

Dependence studied from Monte Carlo

Efficiency Z pT dependence: full Monte Carlo(GEANT-based); Signal overlaid on underlying events

smeared $Z p_T(accep cuts, eff cuts)$

smeared $Z p_T$ (accep cuts)

Efficiency*Acceptance Z p_T dependence

Acceptance (electron pT, position and invariant mass) Z pT dependence: PMCS

smeared $Z p_T$ distribution with accep cut(s)

smeared $Z p_T$ distribution with no cuts

Efficiency*Acceptance p_T dependence

Measured Z $\ensuremath{p_{\mathrm{T}}}$ spectrum need to correct for this dependence

Unfolding of Detector Smearing

- *RUN*(*R*egularized *Un*folding)(hepex/0208022) by V.Blobel
- Maximum likelihood fit(data and trial result with parameters) with regularization term to smooth oscillations due to large correlations between adjacent bins.
- ► Input:
- \checkmark Ntuples of Z pT data
- ✓ Ntuples of Z pT MC: generator, smeared(contains smearing information)
- ✓ Ntuples of pT of QCD background

Systematic Uncertainty

Energy resolution parameters:constant term and sampling term;Energy scale parameter;PDFs, background, unfolding method(input,parameters), data/full MC discrepancy of efficiency pT dependence

Preliminary result, conclusions and further

- Preliminary result for 0.965 fb⁻¹ data
- All y region result consistent with CSS resummation calculation
- Next to perform tuning of Resbos g2
- Small x broadening test in progress for |y|>2

Backup slides

Tevatron for Run II

New 120 GeV Main Injector CM increased form 1.8 TeV to 1.96 TeV

Collider Run II Peak Luminosity

Collider Run II Integrated Luminosity

DPF2006, Lei Wang

D0 calorimeter

Compensating sampling calorimeter:uranium/liquid argon

D0 Run I C = 1.0%**CC:** $N = 0.38 \, GeV$ Eta coverage: Central: |η|<1.1 Endcaps: 1.5<|η|<4.2

 $(\sigma/E)^2 = C^2 + S^2/E + N^2/E^2$

Interpretation:

C = contant term (due to non-uniformities in the response; "intercalibration errors")

S = sampling term (due to sampling fluctuations; "intrinsic performance of the CAL")

N = noise term (due to "noise", e.g. from Uranium, the readout electronics, and, in collision data, the "underlying event")

Typical parameterization

Tracking matching efficiency for EC electrons versus vertex z position

CC Energy resolutions

Calorimeter suffers from the materials added in D0 Run II. Sampling is no longer constant, but depend on position.

Constant Term tuned from Z(2.8%)

Correct Z pT spectrum

6 ē

