## Studies of Zγ Production at the DØ Run II Detector with 1fb<sup>-1</sup> of Data

Alexey Ferapontov

Kansas State University



DPF 2006 Honolulu, Hawaii, October 29<sup>th</sup> - November 3<sup>rd</sup>, 2006





- Motivation
- Event selection and photon identification
- Background
- Observed data and cross-section measurement
- Summary and plans





- Measure cross-section of the Zγ process and compare it with the Standard Model prediction
- Search for new physics (or set limits on it) in gauge
  boson self-interactions: SM forbids Z and γ self-interactions at
  tree-level







Signature of Z boson is 2 high-pt leptons and no/little

### missing energy:

- clean and well known signals
- Iow background
- lepton reconstruction and trigger efficiencies are measured using
   'tag-and-probe' method
- Select events that:
  - pass data quality requirements and fire single EM-trigger
  - contain 2 isolated high- $p_T$  ( $p_T > 25,15$  GeV/c) EM clusters, depositing at least 90% of energy in the EM calorimeter and with electron-like shower shape







- Further on we select events with additional photon candidates for the  $Z\gamma$  final state:
  - isolated (in the calorimeter and the tracker) EM shower with  $p_T > 7$  GeV/c, with 96% of its energy deposited in the central EM calorimeter and separated from both leptons (dR<sub>ev</sub> > 0.7)
  - challenging task to reconstruct photon no track, high QCD background, no discovered natural source of high- $p_T$  di-photon resonance (e.g.  $H \rightarrow \gamma \gamma$ )



#### **DØ Detector**





Alexey Ferapontov





• We measure photon efficiency using data and Monte

## **Carlo simulation:**

- treat photons as electrons, choose and tune selection criteria on Z→ee data
- measure photon efficiency on photon+jet Monte Carlo
- correct for the electron/photon shower difference using Monte Carlo



Photon ID efficiency is above 90% for high-p<sub>T</sub> photons



### Background



Largest background is Z+jet where a jet is misidentified



Alexey Ferapontov





- In our studies we use LO Baur Monte Carlo Zγ generator:
  - NLO corrections are important at high p<sub>T</sub>(γ) and M(Zγ) - most sensitive region to anomalous couplings
  - we correct LO photon p<sub>T</sub> with
    p<sub>T</sub>-dependent k-factor (obtained from
    NLO generator)



 Parameterized Monte Carlo Detector Simulation is then used to calculate reconstruction efficiencies and acceptance of the event selection criteria



### **Observed Processes**



- Final State Radiation:
  - **Z** production (not  $Z\gamma$ )
  - softer photons



- Initial State Radiation:
  - Zγ production
  - photons are harder, than in FSR
  - ISR is most sensitive to AC





#### Alexey Ferapontov





# Using ~1 fb<sup>-1</sup> di-electron events enriched dataset we observe:

- 387  $Z\gamma \rightarrow ee\gamma$  candidate events
- ◆ 33.1 ± 6.4 Z+jet background events
- SM predicts:  $327.3 \pm 19.5 \ Z\gamma \rightarrow ee\gamma$  events (total  $360.4 \pm 20.6$ )



Alexey Ferapontov





• Cross-section for  $Z\gamma \times$  the branching ratio for  $Z \rightarrow ee$ :

$$\sigma \times BR = \frac{(N_{cand} - N_{bkg})}{(\epsilon_{eey} L_{Int.})}$$

• Total event selection efficiency is:  $\epsilon_{Tot} = Acc \times \epsilon_{Trig} \times \epsilon_{EM} \times \epsilon_{\gamma}$ 

•  $\epsilon_{TOT}(central) = 0.053 \pm 0.003; \epsilon_{TOT}(central/forward) = 0.023 \pm 0.002$ 

| Requirement                  | Central Calorimeter Topology                | Central + Forward Calorimeter Topology      |  |
|------------------------------|---------------------------------------------|---------------------------------------------|--|
|                              |                                             |                                             |  |
| N (Zgamma)                   | 256 +/- 16                                  | 131 +/- 11.4                                |  |
| N (QCD)                      | 18.3 +/- 3.0(stat) +/- 2.9(syst)            | 14.8 +/- 2.5 (stat) +/- 2.2 (syst)          |  |
| Total eff                    | 0.053 +/- 0.003                             | 0.023 +/- 0.002                             |  |
| Luminosity, fb <sup>-1</sup> | 1026 +/- 62                                 | 1026 +/- 62                                 |  |
| σ x BR, pb                   | 4.40+/-0.30(stat)+/-0.28(syst)+/-0.26(lumi) | 4.86+/-0.48(stat)+/-0.40(syst)+/-0.29(lumi) |  |
| NLO prediction:              |                                             |                                             |  |
| N (Zgamma)                   | 228 +/- 16.9                                | 99.1 +/- 9.8                                |  |
| σ x BR, pb                   | 4.2 +/- 0.2                                 | 4.2 +/- 0.2                                 |  |





- We use the Best Linear Unbiased Estimate (BLUE) technique to combine central and central/forward crosssection measurements taking into account correlations between channels
- The combined cross-section is measured to be:

 $\sigma \times Br(Z\gamma \rightarrow ee\gamma)_{\text{combined data}} = 4.51 \pm 0.37(\text{stat} + \text{syst}) \pm 0.27(\text{lumi}) \text{ pb}$ 

$$\sigma \times Br(Z\gamma \rightarrow ee\gamma)_{\text{theory NLO}} = 4.2 \pm 0.2 \text{ pb}$$





- Work on finalizing and combining the cross-section results in electron and muon channels, as well as setting limits on trilinear ZZY and ZYY anomalous couplings is almost done
- Preliminary version of the paper is ready, by the end of 2006 we will have the complete Zγ paper ready for publishing
- We also hope to combine our results with the CDF results to increase the sensitivity to the anomalous couplings





• We presented  $Z\gamma \rightarrow ee\gamma$  cross-section measurement for photon  $p_T > 7$  GeV/c, separation from leptons  $dR_{e\gamma} > 0.7$  and di-electron mass  $M_{ee} > 30$  GeV/c<sup>2</sup> using 1 fb<sup>-1</sup> of data:

 $\sigma \times BR(Z\gamma \rightarrow ee\gamma)_{data} = 4.51 \pm 0.37(stat+syst) \pm 0.27(lumi) \text{ pb}$ 

• The measured cross-section agrees well within errors with the NLO SM prediction:

$$\sigma \times BR(Z\gamma \rightarrow ee\gamma)_{\text{theory NLO}} = 4.2 \pm 0.2 \text{ pb}$$

## **BACKUP SLIDES**





- DØ Common Sample Group Dataset: 2EMhighpt (p17.09.01 and p17.09.03)
- Runs 166503 213063 (Oct. 2002 Dec. 2005, v8-v14 trigger lists)
- We include runs that pass all data quality requirements





- Electron candidates selection (from  $Z \rightarrow ee$ ):
  - pass unprescaled single EM trigger
  - 2 EM clusters with:
    - |ID| < <mark>12</mark>
    - isolation < 0.2</p>
    - EMfraction > 0.9
    - |η| < 1.1 or 1.5 < |η| < 2.5, at least one cluster must be in the Central Calorimeter
    - $p_T > 25(15) \text{ GeV/c}$
    - electron likelihood > 0.2
    - $M_{ee} > 30 \text{ GeV/c}^2$





- Photon candidate(s) selection:
  - EM cluster with:
    - |ID| < <mark>12</mark>
    - isolation < 0.07</p>
    - EMfraction > 0.96
    - cluster must be in the Central Calorimeter ( $|\eta| < 1.1$ )
    - $p_{T} > 7 \text{ GeV/c}$
    - shower width at EM3 sigphi3 < 14 cm<sup>2</sup>
    - separation from electrons dR > 0.7
    - sum of track energies in hollow cone around the photon candidate trisoHC(0.05-0.4) < 1.5 GeV</p>





$$\epsilon_{Tot} = Acc \times \epsilon_{Trig} \times \epsilon_{EM} \times \epsilon_{\gamma}$$

| Requirement                  | Central Calorimeter                         | Central + Forward Calorimeter               |  |
|------------------------------|---------------------------------------------|---------------------------------------------|--|
| Geom. Acc.                   | 0.095 +/- 0.003                             | 0.057 +/- 0.002                             |  |
| Trigger eff                  | 0.99 +/- 0.01                               | 0.99 +/- 0.01                               |  |
| Electron eff                 | 0.734 +/- 0.020                             | 0.553 +/- 0.030                             |  |
| Photon eff                   | 0.762 +/- 0.043                             | 0.742 +/- 0.042                             |  |
| Total eff                    | 0.053 +/- 0.003                             | 0.023 +/- 0.002                             |  |
|                              |                                             |                                             |  |
| N (Zgamma)                   | 256 +/- 16                                  | 131 +/- 11.4                                |  |
| N (QCD)                      | 18.3 +/- 3.0(stat) +/- 2.9(syst)            | 14.8 +/- 2.5 (stat) +/- 2.2 (syst)          |  |
| Luminosity, fb <sup>-1</sup> | 1026 +/- 62                                 | 1026 +/- 62                                 |  |
| σ x BR, pb                   | 4.40+/-0.30(stat)+/-0.28(syst)+/-0.26(lumi) | 4.86+/-0.48(stat)+/-0.40(syst)+/-0.29(lumi) |  |
|                              |                                             |                                             |  |
| NLO prediction:              |                                             |                                             |  |
| N (Zgamma)                   | 228 +/- 16.9                                | 99.1 +/- 9.8                                |  |
| σ x BR, pb                   | 4.2 +/- 0.2                                 | 4.2 +/- 0.2                                 |  |





• Uncertainty components summary Table for the BLUE technique:

| Parameter                     | Central Cal. Error | Central/Forward Cal. Error | Correlation, % |
|-------------------------------|--------------------|----------------------------|----------------|
| Eff <sub>cc</sub> electron    | 0.1199             | 0.1324                     | 100            |
| Eff <sub>EC/CC</sub> electron | 0.1199             | 0.2637                     |                |
| Eff photon                    | 0.1444             | 0.1637                     | 100            |
| Acceptance                    | 0.1389             | 0.1609                     |                |
| Eff trigger                   | 0.0444             | 0.0491                     | 100            |
| Background                    | 0.0772             | 0.1393                     | 100            |
| Signal events                 | 0.2962             | 0.4768                     |                |
| Total syst uncert.            | 0.2772             | 0.4019                     |                |
| Total stat uncert.            | 0.2962             | 0.4768                     |                |
| Total uncertainty             | 0.4056             | 0.6236                     |                |