

Measurement of the Wγ Charge-Sign Rapidity Difference at DØ

Gregory Pawloski Rice University DØ Experiment

Introduction

- Studying $q\overline{q} \rightarrow W\gamma$ production
- Measurement is important
- Couplings at interaction vertices are fixed in Standard Model gauge theory
- Variation in Wγ production is sign of new physics
- Wγ production provides a means to measure anomalous moments of the W boson
- Analyzing the $W\gamma \rightarrow ev\gamma$ and $W\gamma \rightarrow \mu v\gamma$ final states
 - Cleanest signal

Hadronic channel dominated by QCD

Anomalous Couplings

Potential electromagnetic moments compatible with Lorentz and EM gauge invariance and CP conservation can be parameterized in an effective Lagrangian:

$$L_{WW_{\gamma}} = -ie\left[\left(W_{\mu\nu}^{\dagger}W^{\mu}A^{\nu} - W_{\mu}^{\dagger}A_{\nu}W^{\mu\nu}\right) + \kappa_{\gamma}W_{\mu}^{\dagger}W_{\nu}F^{\mu\nu} + \frac{\lambda_{\gamma}}{M_{W}^{2}}W_{\lambda\mu}^{\dagger}W_{\nu}^{\mu}F^{\nu\lambda}\right]$$

Minimal coupling of γ and W Fixed by W charge

 κ and λ relate to magnetic dipole and electric quadrupole moments

Magnetic dipole moment $\mu_{W} = \frac{e}{2M_{W}} (1 + \kappa_{y} + \lambda_{y})$ Electric quadrupole moment

$$Q_W = \frac{-e}{M_W^2} (\kappa_y - \lambda_y)$$

In the Standard Model: $\kappa_{y} = 1$ and $\lambda_{y} = 0$

Radiation Amplitude Zero

Standard Model couplings at leading order produce an amplitude zero in the center-of-mass production angle

Angle dependent only on charges

- Ambiguity in θ_{CM} (neutrino P_{Z})
- Correlations lead to dip in $\gamma \ell$ charge-sign rapidity difference
- **Important Measurement**
 - > Probes WW γ vertex
 - Anomalous moments spoil cancellation
 - ≻ Never been observed

Object efficiencies measured with data from resonances

Clean samples

Lepton efficiencies obtained from $Z \rightarrow \ell \ell$ events

- Tag-and-Probe method
- > Tag lepton satisfies event selection requirements (trigger, etc.)
- Probe lepton unbiased sample for efficiency estimate

Photon efficiencies

- $\succ \text{Use } Z \rightarrow \ell \ell \rightarrow \ell \ell \gamma \text{ events}$ (three body mass = Z mass)
- Leptons satisfy event selection requirements (trigger, etc.)
- Photon sample is clean
- DØ lacked the integrated luminosity to do this before

W+j

Jet fragments to significant electromagnetic component (*i.e.* π^0 , η , etc.) to produce a photon signature

Dominant background in both channels, on order of signal events

Estimated with data

leX

lepton + electron + missing E_T events where electron fakes photon because of lost track Significant background in electron channel *i.e.* Z \rightarrow ee

Estimated with data

Backgrounds

Zγ Mis-measured missing E_T produces W signature Caused by mis-measured or unreconstructed lepton More significant for muon channel (lost muon → missing E_T) Estimated with MC

Wγ → τνγ τ+γ+missing energy → ℓ+γ+missing energyEstimate with MC

Preliminary Results

Electron Channel (933 pb ⁻¹)		Muon Channel (878 pb ⁻¹)
Candidates:	389	Candidates: 245
Wj:	148 ± 17	Wj: 98 ± 12
leX:	34 <u>+</u> 4	$\ell e X: 6 \pm 2$
τ:	1.7 ± 0.2	$\tau: 2.6 \pm 0.4$
Ζγ:		$Z\gamma:$ 8 \pm 1
Expected Signal:	211 ± 14	Expected Signal: 130 ± 9
Measured Signal:	205 ± 26	Measured Signal: 130 ± 18
$\sigma(p\overline{p} \rightarrow ev\gamma + X):$		$σ(p\overline{p} → μνγ+X)$:
$3.12 \pm 0.49_{stat.+sys.} \pm 0.19_{lumi.}$ pb $3.21 \pm 0.49_{stat.+sys.} \pm 0.20_{lumi.}$ pb		
SM σ(pp→ $\ell v \gamma$ +X) = 3.21 ± 0.08 _{ppF} pb Study Prompt Wγ		
w.r.t. $\mathbf{E}_{T}(\gamma) > 7 \text{ GeV}, \Delta \mathbf{R}_{\ell\gamma} > 0.7, \mathbf{M}_{T}(\mathbf{W}, \gamma) > 90 \text{ GeV} \qquad \text{not } \mathbf{W} \rightarrow \ell \ell \rightarrow \ell \ell \gamma$		
8 Greg Pawloski — October 2006		

Rapidity Distribution

The rapidity distribution is consistent with the Standard Model

Shape is indicative of destructive interference from amplitude zero The next slides address how to quantify this ...

Examining the Distribution

2 methods are presented to examine the rapidity distribution

$> 1^{st}$ method: Shape Test

Compare the data shape to an alternative hypothesis

 χ^2 test of the normalized distributions

Alternative hypothesis is anomalous WW γ coupling (κ =-1, λ =0)

Physically motivated -- turns off W magnetic dipole moment

Theoretic distribution expected to be unimodal (dipless)

$> 2^{nd}$ method: Dip Test

Measure statistical significant of observed dip.

Compare number of candidates in expected dip region to number in peak Answers question:

Could this be a statistical fluctuation, or are we observing a real process that leads to a depletion of events in the distribution such as the radiation zero?

Shape Test

Fit shape of an anomalous coupling (κ =-1, λ =0) MC distribution to the data

Normalization allowed to float Preliminary Result:

Unimodal hypothesis is consistent with data with a χ^2 of 9 for 11 d.o.f. Result dependent on binning Takes weight away from region of interest

Normalization set by cross section

- Note anomalous couplings enhance the $W\gamma$ cross section With cross section normalization the alternate
- hypothesis has a χ^2 of 55 for 12 d.o.f.
- Consider test that is independent of choice of couplings

Dip Test

Purpose:

Measure the probability that the observed depletion of events in the expected region is a statistical fluctuation

Method:

Use 3 bins

- $> 1^{st}$ bin samples the small peak
- $> 2^{nd}$ bin samples the dip

➤ 3rd bin samples the big peak
Measure R₁ = $\frac{N_{Dip}}{N_{Peakl}}$, and R₂ = $\frac{N_{Dip}}{N_{Peak2}}$ By definition if R₁, R₂ < 1 there is a</p>
depletion of events in the Standard
Model expected region

 R_1 and R_2 are the relevant test statistics

Probability there is no dip = Probability for $R_1 \ge 1$ or $R_2 \ge 1$

Data Candidates:

 $R_{1} = 0.841 \pm 0.117$ (DØ Preliminary)

 $R_2 = 0.508 \pm 0.064$ (DØ Preliminary)

Preliminary Result:

Assuming Gaussian errors on R_1 and R_2 , the dipless hypothesis

is ruled out at 90% C.L.

Cross Check:

Also used a standardized method of dip hunting¹ that is model independent and obtained consistent results. ¹J.A. Haritgan and P.M. Hartigan "The Dip Test of Unimodelity"

J.A. Haritgan and P.M. Hartigan "The Dip Test of Unimodality", Annals of Statistics **13**, 70-84 (1985)

Conclusion

- The $W\gamma$ final state has been observed with high statistics in two W decay modes
- The production rate is consistent with SM expectations
- The charge-sign rapidity distribution is consistent with the SM
 - The shape that is indicative of the radiation amplitude zero with the unimodal hypothesis being ruled out to 90% C.L.
- As our integrated luminosity increases, we will be able to maker even stronger statements.
- Looking immediately ahead, we intend to investigate combining measurements of the charge-sign rapidity distribution with the photon E_T spectrum to set limits on anomalous WWy couplings

