The Daya Bay Reactor NeutrinoExperiment

DPF 2006, Honolulu, Hawaii 10/30/2006

Mary Bishai (for the Daya Bay Collaboration)

mbishai@bnl.gov

Brookhaven National Lab.

Mary Bishai, BNL ¹ – p.1/37

PHYSICS POTENTIAL OF REACTOR NEUTRINO EXPERIMENTS

Detecting Neutrinos - History

1950's: Fred Reines at Los Alamos and Clyde Cowan mounted an experiment at the Hanford nuclear reactor in 1953 and in 1955 at the new Savannah River <code>nuclear</code> <code>reactor. A detector filled with <code>water</code> with $CdCl_2$ in solution was</code> **located 11 meters from the reactor center and 12 meters underground. The detection sequence was as follows:**

1.
$$
\bar{\nu}_e + p \rightarrow n + e^+
$$

\n2. $e^+ + e^- \rightarrow \gamma \gamma$ (2X 0.511 MeV)
\n3. $n + {}^{108}Cd \rightarrow {}^{109}Cd* \rightarrow {}^{109}Cd + \gamma (\tau$
\n5 μ s).

Neutrinos first detected from ^a reactor!

=

Neutrino mixing

In 1962 Maki, Nakagawa, Sakata proposed ^a ² flavor mixing matrix. The 3-flavor form now used (attributed to MNS and Pontecorvo) is:

 UeUeUeνν1231e UµUµUµ=νν1232µUτUτUτνν1233τ|} {z^U^P ^M ^N ^S ⁰.⁸ ⁰.⁵¹ ⁰.² ⁰.⁰⁰⁵**?** UPMNSVCKM⁰.⁴ ⁰.⁶ ⁰.⁷⁰.² ¹ ⁰.⁰⁴∼∼⁰.⁴ ⁰.⁶ ⁰.⁷⁰.⁰⁰⁵ ⁰.⁰⁴ ¹

Compared to CKM matrix : v. large off diagonal terms, Ue3 **unknown**

 V_{τ}

Neutrino Matrix Parameterization

Reactor $\bar{\nu}_e$ oscillations

$$
P(\nu_e \to \nu_e) = 1 - \sin^2 2\theta_{13} \sin^2 (1.27 \Delta m_{31}^2 L/E)
$$

-
$$
\cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 (1.27 \Delta m_{21}^2 L/E)
$$

 $\bf{Reactor}$ ν_e $\bf{disappearance}$ = ${\it unambiguous}$ $\bf{measurement}$ of $\sin^22\theta_{13}$

$\text{Getting to } \sin^2 2\theta_{13} <$ ≤ 0.01

 $\textrm{Current knowledge of $\sin^22\theta_{13}$:}$ **Global fit:** $\sin^2 2\theta_{13} < 0.11$ **(90% C.L.)**

Lots of statistics: -Powerful nuclearreactors ⁺ more massive detectorsSupress cosmic backgrounds:-Increase overburden ⁼ go deeperunderground.Reduce systematic uncertainties:-Optimize baseline for best S:B -Deploy near detectors as close aspossible to reactor to minimize reactor flux uncertainties. -Use multiple, "identical", and interchangeable detectors to reducenear/far detector uncertainties.

- Calibration, calibration, calibration...

OVERVIEW OF THE DAYA BAY EXPERIMENT

The Daya Bay Reactor Complex

Reactor Specs:

Located 55km north-east of Hong Kong. Current: ² cores at Daya Bay site ⁺ ² cores at Ling Ao site = 11.6 GW_{th} **By 2011: 2 more cores at Ling Ao II site ⁼ 17.4GW**th⇒ **5th most powerful in the world 1 GW** $_{th}$ **=** = $10^{20}\bar{\nu_e} /$ second **Powerful reactors with mountains close by!**

Daya Bay Experimental Layout

Multiple "identical" detector modulesdeployed at 2 near sites and 1 far site2 detector modules at each near sitefor cross-check and 4 detector modules at far site ⁼ 8 total A midsite hall is planned where 2detector modules could be deployedwhile civil construction of the far siteis ongoing

Site locations chosen to optimize overburden

and osc. baseline. →

Cosmic Ray Backgrounds

-Used ^a modified Gaisser parametrization for cosmic-ray flux at surface

-Apply MUSIC and mountain profile to estimate muon intensity and energy

Neutrino flux from Reactors

Reactor power is known to at least 2%

(CHOOZ states 0.6% uncertainty)

Near/Far cancellation

FAQ: How does the extended distribution of near cores compromise the near/farcancellation?

A: Deweigh the oversampled cores by a factor, α , Ratio = $\alpha \frac{\text{Near1}}{\text{far}}$ $\frac{\text{ear1}}{\text{far}} + \frac{\text{Near2}}{\text{far}}$

$$
\alpha=\frac{1/(L_{22}^2L_{1f}^2)-1/(L_{21}^2L_{2f}^2)}{1/(L_{11}^2L_{2f}^2)-1/(L_{12}^2L_{1f}^2)}
$$

For Daya Bay 4 cores, $\alpha = 0.34 \Rightarrow$ **factor 50 cancellation: 2%**→ **0.035%** $\mathsf{For~}$ Daya Bay 6 cores, $\alpha = 0.39 \Rightarrow$ **factor 20 cancellation: 2%**→ **0.1%**

Deweighing⇒ **cancellation of reactor power uncertainties to better than 0.l% .**

THE DAYA BAY DETECTORS

Detecting $\bar{\nu_e}$ **using GD-Liquid Scint.**

The Anti Neutrino Detector

3 zone nested cylindrical structure with the following specifications:

²²⁴ 8" PMTS are mounted around thecircumference of the outer steel tankwith diffuse reflectors on top and bot-

tom:

$$
\tfrac{\sigma}{E}\sim \tfrac{12\%}{\sqrt{E(\text{MeV})}},\,\sigma_{pos}=13\,\text{cm}
$$

ν¯e **Detector Design Optimization**

n capture on Gd yields 8 MeV with 3-4 γ 's

$\boldsymbol \gamma$ $\widehat{\mathcal{E}}^{100}$ Efficiency 92% 85 80^F 75 70 45cm 65 $\overline{10}$ $\overline{20}$ 30 40 50 60 $\overline{70}$ $\overline{80}$ Gamma Cacther Thickness (cm)

The Daya Bay Detector Hall Layout

 $\frac{Water}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ **mersed in ^a water pool with 2.5m ofwater on all sides. Shields againstfast neutrons,** γ**^s from wall. Inner muon veto: 1m in from the sidesand bottom of the pool ^a single layerof 8" PMTs (3% coverage) acts as ^a**water Cerenkov μ detector. **Outer muon veto: The outer 1m of thewater pool is instrumented with segmented water Cerenkov detectors. RPC system : On top of pool, multiplelayers of resistive plate chambers aremounted on ^a movable roof.**

BACKGROUNDS AND SYSTEMATICS

Fast Neutrons

Fast neutron simulation results: events/day/20T module

Generated by showers from cosmic muons:

Q= 13 MeV, $\tau = 178$ <code>msec</code> \Rightarrow <code>poor</code> spatial correlation with μ track.
Computed rates (Hesper at, al.) :

Computed rates (Hagner et. al.) :

But it can be measured ! [→] $\sigma(B/S) = 0.3\%$ (near) **0.1%(far):**

Time since muon (sec)

Event rates per Detector Module

Accidental background rates

Prompt: γ from radioactivity (γ ∼**50Hz/module)Delayed:: 1) untagged single neutroncapture 2) cosmogenic beta emmiters(6-10MeV, mostly** ¹⁰**B) 3)U/Th**→ **O, Si** $(\alpha, n, \gamma[6$ $-10\,\mathrm{MeV}$)

Untagged background rates are tiny and subtractable

Calibration/Monitoring Systems

3 access ports for calibration at different R

Pulsed LED system for att. length/PMT response

 $< 0.2\%$ accuracy

Automated system deploys ⁴ different sources

Source Calibrations

Detector systematics

Detector systematics could be lowered to 0.18%

R&D,care in construction, assy, calibration, monitoring

TIMELINE AND SENSITIVITY

Baseline Timeline

Sensitivities

← **90% C.L. limit vs time with baselinedetector systematic of0.38%2% uncorrelated reactor power uncertainty**

After 3 years running [→]

- **baseline detector systematic 0.38%——**
- **- - - - goal detector systematic 0.18%**

BACKUP

Neutrino oscillations

Assume 2 flavors only:

$$
\begin{pmatrix}\n\nu_a \\
\nu_b\n\end{pmatrix} = \begin{pmatrix}\n\cos(\theta) & \sin(\theta) \\
-\sin(\theta) & \cos(\theta)\n\end{pmatrix} \begin{pmatrix}\n\nu_1 \\
\nu_2\n\end{pmatrix}
$$

$$
\nu_a(t) = \cos(\theta)\nu_1(t) + \sin(\theta)\nu_2(t)
$$

\n
$$
P(\nu_a \to \nu_b) = |\langle \nu_b | \nu_a(t) \rangle|^2
$$

\n
$$
= \sin^2(\theta) \cos^2(\theta) |e^{-iE_2 t} - e^{-iE_1 t}|^2
$$

$$
P(\nu_a \to \nu_b) = \sin^2 2\theta \sin^2 \frac{1.27((m_2^2 - m_1^2)/eV^2)(L/km)}{(E/GeV)}
$$

$$
P(\nu_a \to \nu_a) = 1 - \sin^2 2\theta \sin^2 \frac{1.27((m_2^2 - m_1^2)/eV^2)(L/km)}{(E/GeV)}
$$

Site Geology

Conceptual design of the tunnel and the Site investigation including bore holes completed

Yifang Want

GD-LS R&D ¹

BNL Gd-LS Optical Attenuation: Stable So Far ~700 days

- Gd-carboxylate in PC-based LS stable for ~2 years.
- Attenuation Length >15m (for abs < 0.003).
- Promising data for Linear Alkyl Benzene, LAB

(LAB use suggested by SNO+ experiment).

Dick Hahn

GD-LS R&D ²

• LAB has lower optical absorption. .100% LAB and PC have similar

light outputs.

- But LAB has 2X light output of 20% PC + 80% dodecane mixture.
- BNL Gd-PC has ~3X better optical absorption than Bicron BC-521.

Dick Hahn

RLH-7

H/C Ratio

Bob Mckeown

- Combustion analysis (<0.3%?)
- Neutron capture/scattering (R&D)
- Filling detector pairs from common batch

Neutron Time Cuts

These cut times must be the same to \sim 10ns for all modules \rightarrow use common clock

 \rightarrow 0.05% contribution to neutron efficiency

Bob Mckeown

Daya Bay/Chooz comparison

Kam-Biu Luk

