The Daya Bay Reactor Neutrino Experiment

DPF 2006, Honolulu, Hawaii 10/30/2006

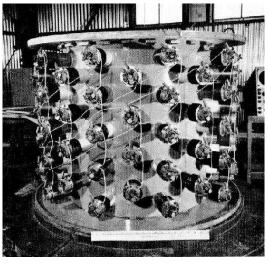
Mary Bishai (for the Daya Bay Collaboration)

mbishai@bnl.gov

Brookhaven National Lab.

Mary Bishai, BNL 1 - p.1/3

PHYSICS POTENTIAL OF REACTOR NEUTRINO EXPERIMENTS



Detecting Neutrinos - History

<u>1950's:</u> Fred Reines at Los Alamos and Clyde Cowan mounted an experiment at the Hanford nuclear reactor in 1953 and in 1955 at the new Savannah River nuclear reactor. A detector filled with water with $CdCl_2$ in solution was located 11 meters from the reactor center and 12 meters underground. The detection sequence was as follows:

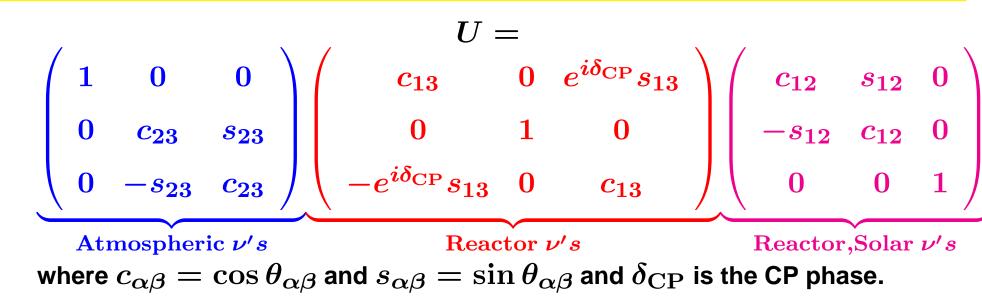
1.
$$\bar{\nu_e} + p \rightarrow n + e^+$$

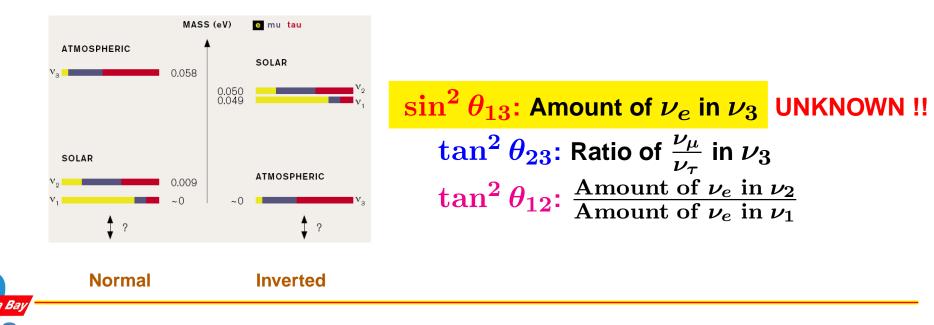
2. $e^+ + e^- \rightarrow \gamma \gamma$ (2X 0.511 MeV)

3.
$$n+^{108}Cd \rightarrow^{109}Cd* \rightarrow^{109}Cd+\gamma$$
 ($au=5\mu s$).

Neutrinos first detected from a reactor!

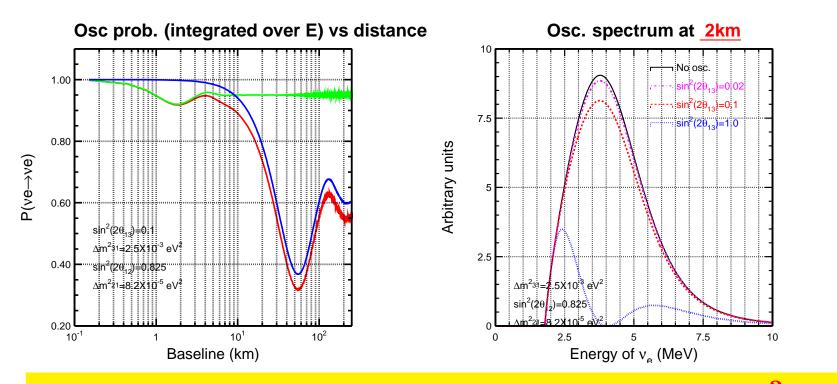
Neutrino mixing


In 1962 Maki, Nakagawa, Sakata proposed a 2 flavor mixing matrix. The 3-flavor form now used (attributed to MNS and Pontecorvo) is:


$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}_{\substack{0.8 \\ 0.4 \\ 0.5 \\ 0.2 \\ 0.005 \\ 0.04 \\ 0.005 \\ 0.04 \\ 0.005 \\ 0.04 \\ 1 \end{pmatrix}$$

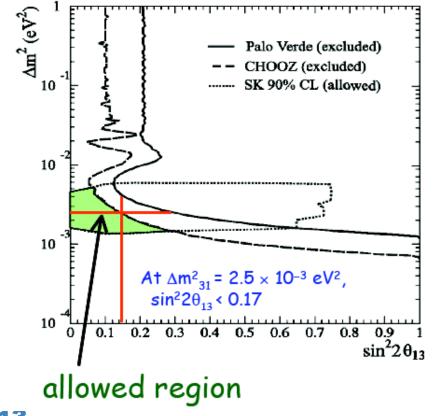
Compared to CKM matrix : v. large off diagonal terms, U_{e3} unknown

 v_{τ}


Neutrino Matrix Parameterization

Reactor $\bar{\nu}_e$ oscillations

$$P(\nu_e \to \nu_e) = 1 - \sin^2 2\theta_{13} \sin^2(1.27\Delta m_{31}^2 L/E) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2(1.27\Delta m_{21}^2 L/E)$$



Reactor ν_e disappearance = unambiguous measurement of $\sin^2 2\theta_{13}$

Getting to $\sin^2 2\theta_{13} < 0.01$

Current knowledge of $\sin^2 2\theta_{13}$: Global fit: $\sin^2 2\theta_{13} < 0.11$ (90% C.L.)

Lots of statistics: -Powerful nuclear reactors + more massive detectors Supress cosmic backgrounds: -Increase overburden = go deeper underground. **Reduce systematic uncertainties:** -Optimize baseline for best S:B -Deploy near detectors as close as possible to reactor to minimize reactor flux uncertainties. -Use multiple, "identical", and interchangeable detectors to reduce near/far detector uncertainties. - Calibration, calibration, calibration...

OVERVIEW OF THE DAYA BAY EXPERIMENT

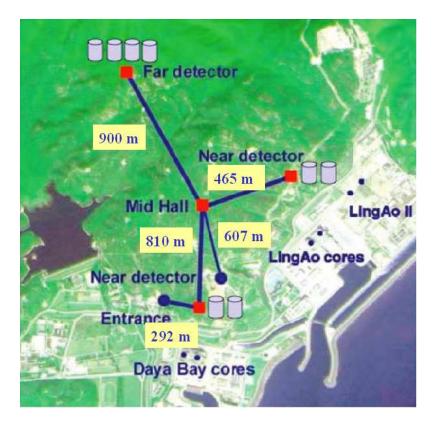
The Daya Bay Reactor Complex

Reactor Specs:

Located 55km north-east of Hong Kong.

Current: 2 cores at Daya Bay site + 2 cores at

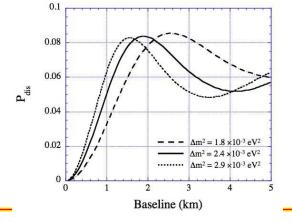
Ling Ao site = 11.6 GW $_{th}$


By 2011: 2 more cores at Ling Ao II site = 17.4

 $GW_{th} \Rightarrow$ 5th most powerful in the world

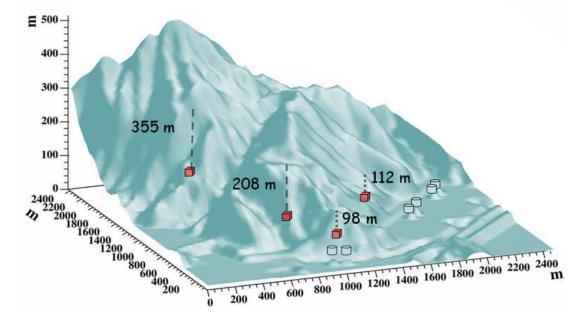
1 GW $_{th}$ = $10^{20} \bar{
u_e}/{
m second}$

Powerful reactors with mountains close by!


Daya Bay Experimental Layout

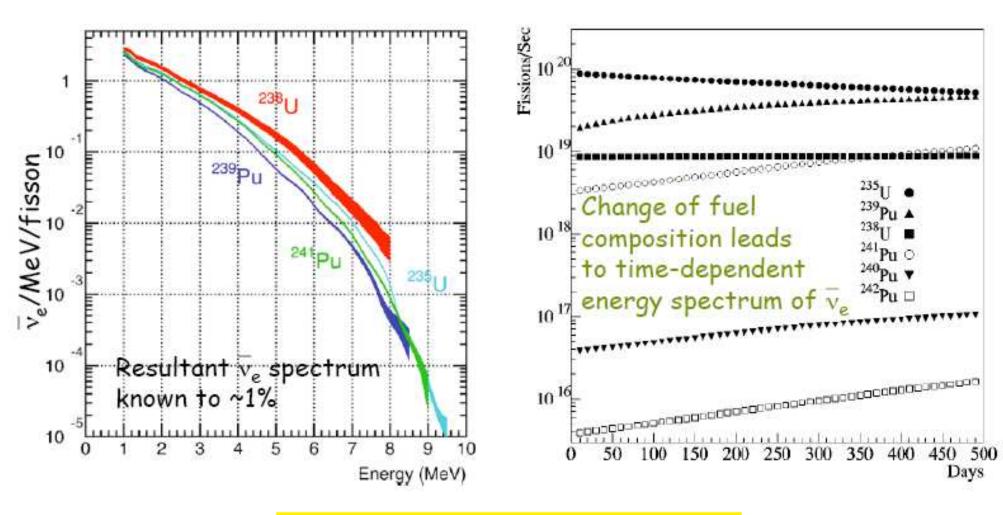
Multiple "identical" detector modules deployed at 2 near sites and 1 far site 2 detector modules at each near site for cross-check and 4 detector modules at far site = 8 total A midsite hall is planned where 2 detector modules could be deployed while civil construction of the far site is ongoing

Site locations chosen to optimize overburden


and osc. baseline. \rightarrow

Cosmic Ray Backgrounds

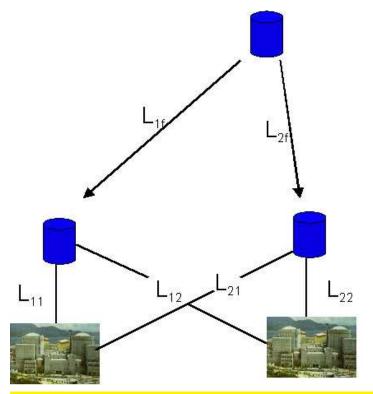
-Used a modified Gaisser parametrization for cosmic-ray flux at surface


-Apply MUSIC and mountain profile to estimate muon intensity and energy

	DYB	LA	Mid	Far
Overburden (m)	98	112	208	355
Muon intensity (Hz/m ²)	1.16	0.73	0.17	0.041
Mean Energy (GeV)	55	60	97	138

Neutrino flux from Reactors

Reactor power is known to at least 2%


(CHOOZ states 0.6% uncertainty)

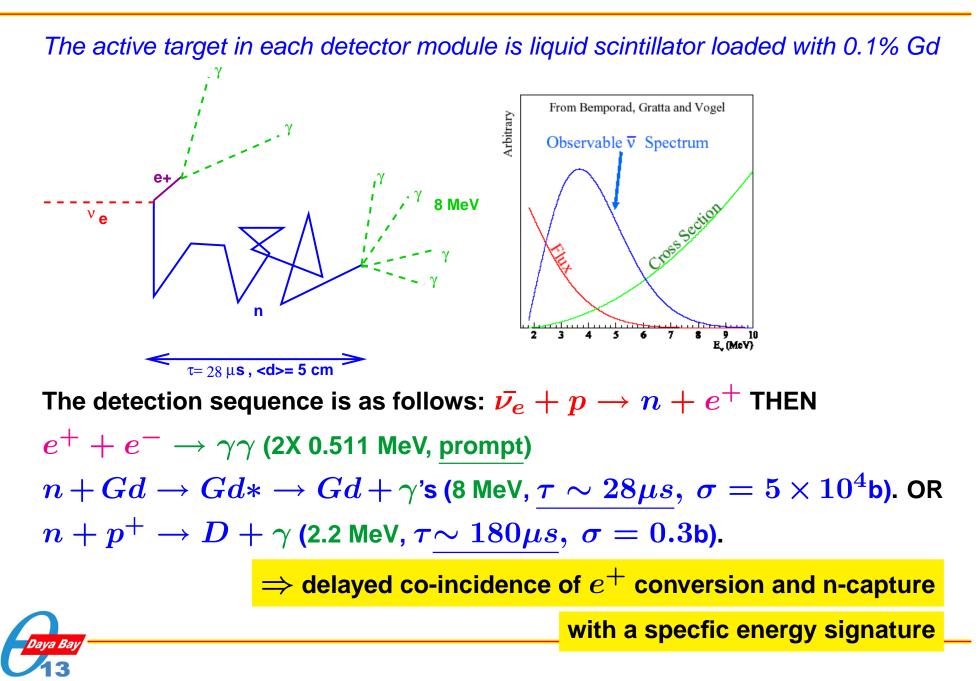
Near/Far cancellation

FAQ: How does the extended distribution of near cores compromise the near/far cancellation?

A: Deweigh the oversampled cores by a factor, α , Ratio = $\alpha \frac{\text{Near1}}{\text{far}} + \frac{\text{Near2}}{\text{far}}$

$$\alpha = \frac{1/(L_{22}^2 L_{1f}^2) - 1/(L_{21}^2 L_{2f}^2)}{1/(L_{11}^2 L_{2f}^2) - 1/(L_{12}^2 L_{1f}^2)}$$

For Daya Bay 4 cores, $\alpha = 0.34 \Rightarrow$ factor 50 cancellation: 2% \rightarrow 0.035% For Daya Bay 6 cores, $\alpha = 0.39 \Rightarrow$ factor 20 cancellation: 2% \rightarrow 0.1%

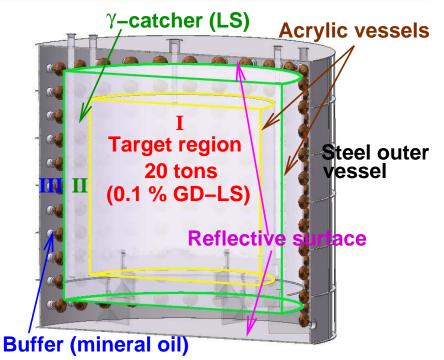

Deweighing \Rightarrow cancellation of reactor power uncertainties to better than 0.1%.

THE DAYA BAY DETECTORS

Detecting $\bar{\nu_e}$ using GD-Liquid Scint.

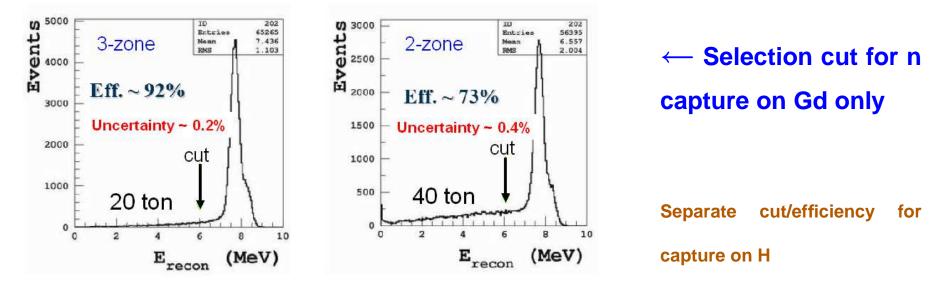
The Anti Neutrino Detector

3 zone nested cylindrical structure with the following specifications:


Region	IR	OR	inner height	outer height	vessel thickness	material
	(m)	(m)	(m)	(m)	(mm)	
I-target	0.00	1.60	0.00	3.20	10.0	Gd-LS
ll- γ -catcher	1.60	2.05	3.20	4.10	15.0	LS
III-buffer	2.05	2.50	4.10	5.00	8.0–10.0	Mineral oil

224 8" PMTS are mounted around the circumference of the outer steel tank with diffuse reflectors on top and bot-

tom:

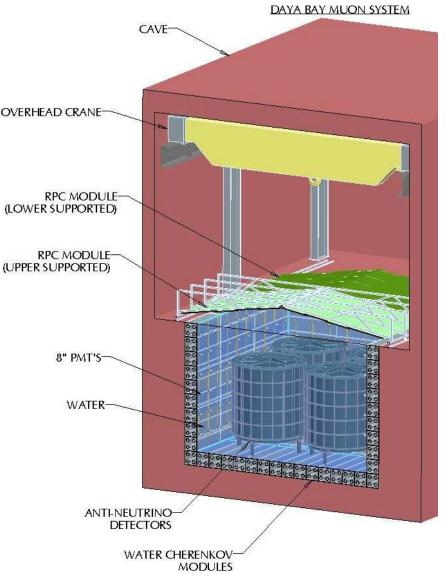

$$rac{\sigma}{E} \sim rac{12\%}{\sqrt{E({
m MeV})}}, \ \sigma_{pos} = 13 \, {
m cm}$$

	DYB	LA	Far
Event rates/20T/day	930	760	90

$\bar{\nu_e}$ Detector Design Optimization

3 zone vs 2 zone \Rightarrow reduced systematic uncertainty in reconstructed energy cut:

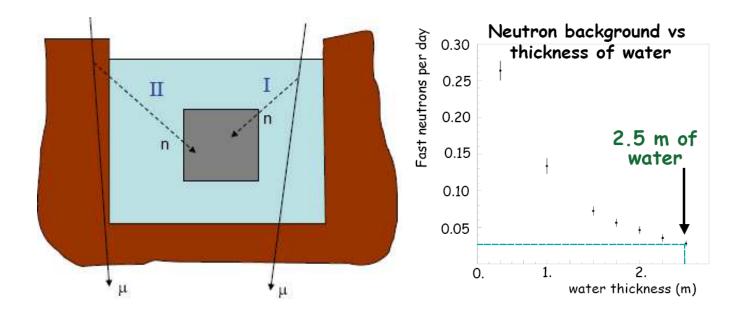
n capture on Gd yields 8 MeV with 3-4 γ 's


γ catcher efficiency Gamma Catcher Efficiency at 6-MeV-Energy Cut §¹⁰⁰ Efficiency 66 92% 85 80F 75 70 45cm 65 0 30 40 50 60 Gamma Cacther Thickness (cm) 10 20 70 80

Buffer oil shielding

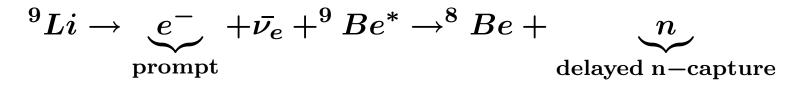
		Buffer Oil Thickness (Rates in Hz)				
Isotope	Concentration	20 cm	25 cm	30 cm	40 cm	
²³⁸ U	40 ppb	2.2	1.6	1.1	0.6	
²³² Th	40 ppb	1.0	0.7	0.6	0.3	
⁴⁰ K	25 ppb	4.5	3.2	2.2	1.3	
Total		7.7	5.5	3.9	2.2	

The Daya Bay Detector Hall Layout


Water pool: The $\overline{\nu_e}$ detectors are immersed in a water pool with 2.5m of water on all sides. Shields against fast neutrons, γ s from wall. **Inner muon veto:** 1m in from the sides and bottom of the pool a single layer of 8" PMTs (3% coverage) acts as a (UPPER SUPPORTED) water Cerenkov μ detector. Outer muon veto: The outer 1m of the water pool is instrumented with segmented water Cerenkov detectors. **RPC system :** On top of pool, multiple layers of resistive plate chambers are mounted on a movable roof.

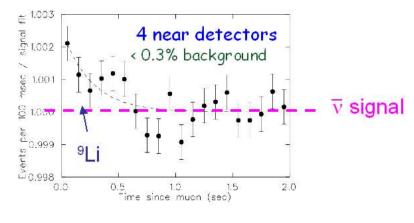
BACKGROUNDS AND SYSTEMATICS

Fast Neutrons


Fast neutron simulation results: events/day/20T module

	I: Missed veto	II:Rock neutrons	II:Total/Signal
DYB	0.10	0.5	$6 imes 10^{-4}$
LA	0.07	0.35	$6 imes 10^{-4}$
Far	0.01	0.03	$4 imes 10^{-4}$

Generated by showers from cosmic muons:



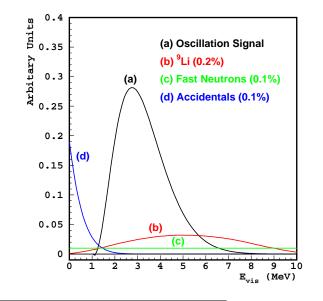
Q= 13 MeV, au=178 msec \Rightarrow poor spatial correlation with μ track.

Computed rates (Hagner et. al.) :

	DYB	LA	Far
$^9Li+^8He$ rates/module/day	3.7	2.5	0.26

But it can be measured ! ightarrow $\sigma(B/S)=0.3\%$ (near) 0.1%(far):

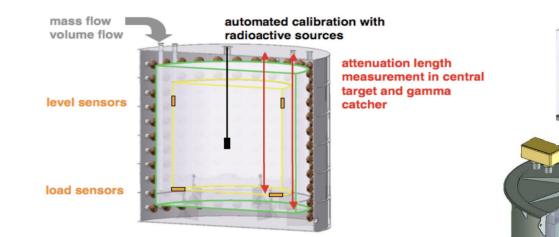
Time since muon (sec)


Event rates per Detector Module

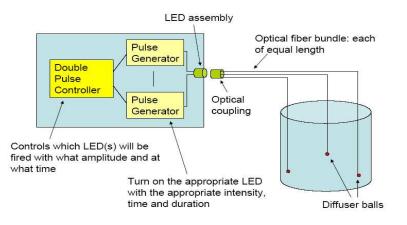
Source	Units	DB	LA	far	Use
Antineutrino Signal	(day-1)	930	760	90	signal
Radioacti∨e Backgrounds	(Hz)	30	30	30	e⁺-thresh.
Rock	(Hz)	4	4	4	
PMT glass	(Hz)	8	8	8	
other materials (steel)	(Hz)	18	18	18	
Gd contamination	(Hz)	1	1	1	
Muons	(Hz)	24	14	1	
Single neutron	(day-1)	9000	6000	400	cal.
Tagged single neutron	(day-1)	480	320	45	cal./bkg.
Tagged fast neutron	(day-1)	20	13	2	Bkg est
β emitters (6-10 MeV)	(day-1)	210	140	15	n-thresh.
¹² B	(day-1)	400	270	28	cal.
⁸ He+ ⁹ Li	(day-1)	4	3	0	Bkg

Accidental background rates

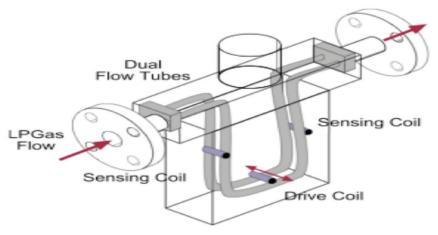
Prompt: γ fromradioactivity(~50Hz/module)Delayed::1)untaggedsingleneutroncapture2)cosmogenicbetaemmiters(6-10MeV, mostly 10 B)3)U/Th \rightarrow O, Si($\alpha, n, \gamma [6 - 10 \text{ MeV}]$)



	DYB	LA	Far
Signal rates	930/day	760/day	90/day
1) neutrons	18/day	12/day	1.5/day
2) <i>β</i> s	210/day	141/day	14.6/day
3) $lpha,n\gamma$	<10/day	<10/day	<10/day
Coinc rate	2.3/day	1.3/day	0.26/day
B/S	$\sim 2 imes 10^{-3}$	$\sim 2 imes 10^{-3}$	$\sim 3 imes 10^{-3}$



Untagged background rates are tiny and subtractable


Calibration/Monitoring Systems

3 access ports for calibration at different $oldsymbol{R}$

Automated system deploys 4 different sources

Pulsed LED system for att. length/PMT response

Coriolis mass flowmeters < 0.2% accuracy

Source Calibrations

Sources	Calibrations
Neutron sources:	Neutron response, relative and
Am-Be and 252 Cf	absolute efficiency, capture time
Positron sources:	Positron response, energy scale
²² Na, ⁶⁸ Ge	trigger threshold
Gamma sources:	Energy linearity, stability, resolution
	spatial and temporal variations, quenching effect
	137 Cs (0.662 MeV), 54 Mn (0.835 MeV), 65 Zn (1.351 MeV)
	40 K (1.461 MeV), 22 Na (annih + 1.275 MeV), 60 Co (1.173 + 1.333 MeV)
	208 TI (2.615 MeV), Am-Be (4.43 MeV), 238 Pu- 13 C (6.13 MeV)
H neutron capture	2.223 MeV
Gd neutron capture	\sim 8 MeV

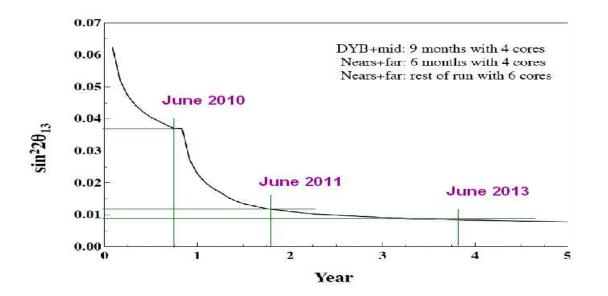
Detector systematics

Sourc	e of uncertainty	Chooz	z Daya Bay (<i>relative</i>)		relative)
		(absolute)	Baseline Goal Goal w/Swap		Goal w/Swapping
# protons	H/C ratio	0.8	0.2	0.1	0
	Mass	-	0.2	0.02	0.006
Detector	Energy cuts	0.8	0.2	0.1	0.1
Efficiency	Position cuts	0.32	0.0	0.0	0.0
	Time cuts	0.4	0.1	0.03	0.03
	H/Gd ratio	1.0	0.1	0.1	0.0
	n multiplicity	0.5	0.05	0.05	0.05
	Trigger	0	0.01	0.01	0.01
	Live time	0	< 0.01	< 0.01	< 0.01
Total detect	or-related uncertainty	1.7%	0.38%	0.18%	0.12%

Detector systematics could be lowered to 0.18%

R&D,care in construction, assy, calibration, monitoring

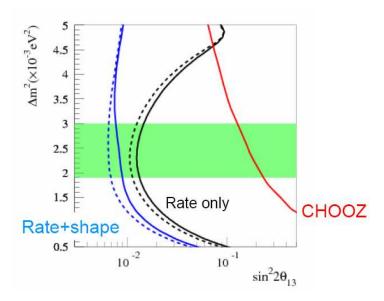
TIMELINE AND SENSITIVITY



Baseline Timeline

Initial Chinese Funding Secured	Apr & Aug 06
US CD-1 approval	Feb 07
Start tunnel construction	Apr 07
PMT Contract Let	Aug 07
US CD-2/3 Approval	Nov 07
Beneficial Occupancy of DB Near Hall	Oct 08
Beneficial Occupancy of Mid Hall	Feb 09
DB near site ready for AD commissioning	Feb 09
Midsite ready to take data	Sept 09
Beneficial occupancy of LA near & far hall	Nov 09
All near and far sites ready to take data	June 10

Sensitivities



← 90% C.L. limit vs time with <u>baseline</u> detector systematic of 0.38%2% uncorrelated reactor power uncertainty

After 3 years running \rightarrow

----- <u>baseline</u> detector systematic 0.38%

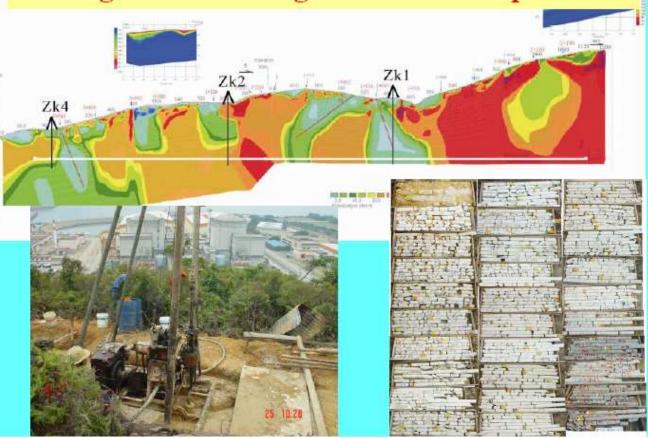
---- goal detector systematic 0.18%

BACKUP

Neutrino oscillations

Assume 2 flavors only:

$$\left(egin{array}{c}
u_a \
u_b \end{array}
ight) = \left(egin{array}{c} \cos(heta) & \sin(heta) \ -\sin(heta) & \cos(heta) \end{array}
ight) \left(egin{array}{c}
u_1 \
u_2 \end{array}
ight)$$

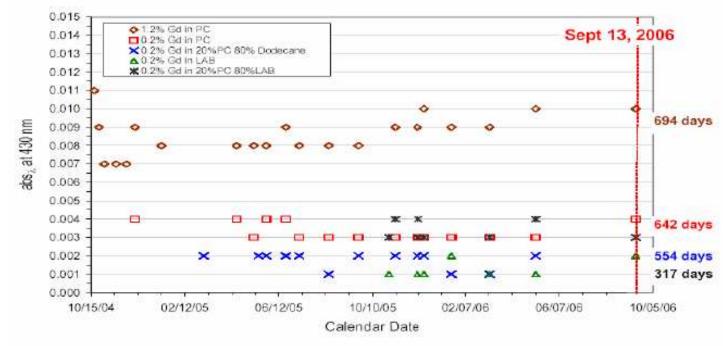

$$\begin{aligned} \nu_a(t) &= \cos(\theta)\nu_1(t) + \sin(\theta)\nu_2(t) \\ P(\nu_a \to \nu_b) &= |<\nu_b|\nu_a(t)>|^2 \\ &= \sin^2(\theta)\cos^2(\theta)|e^{-iE_2t} - e^{-iE_1t}|^2 \end{aligned}$$

$$\begin{split} P(\nu_a \to \nu_b) &= \sin^2 2\theta \sin^2 \frac{1.27((m_2^2 - m_1^2)/eV^2)(L/km)}{(E/GeV)} \\ P(\nu_a \to \nu_a) &= 1 - \sin^2 2\theta \sin^2 \frac{1.27((m_2^2 - m_1^2)/eV^2)(L/km)}{(E/GeV)} \end{split}$$

Site Geology

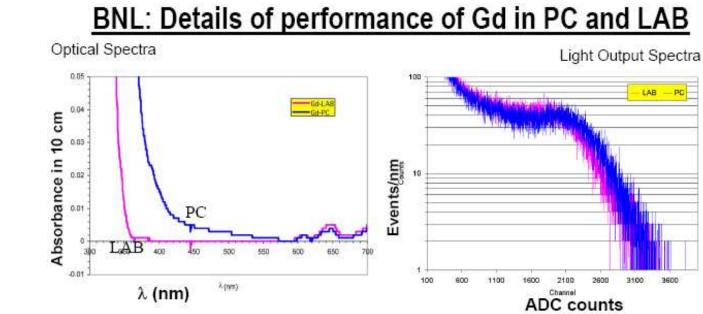
Conceptual design of the tunnel and the Site investigation including bore holes completed

Yifang Want

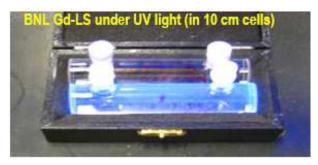

GD-LS R&D 1

BNL Gd-LS Optical Attenuation: Stable So Far ~700 days

- Gd-carboxylate in PC-based LS stable for ~2 years.
- Attenuation Length >15m (for abs < 0.003).
- Promising data for Linear Alkyl Benzene, LAB


(LAB use suggested by SNO+ experiment).

Dick Hahn

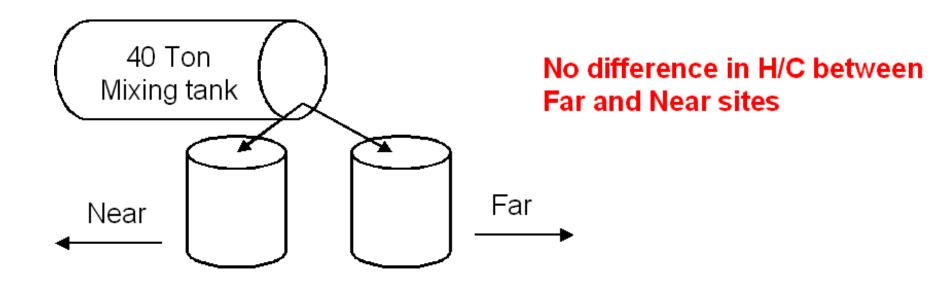


GD-LS R&D 2

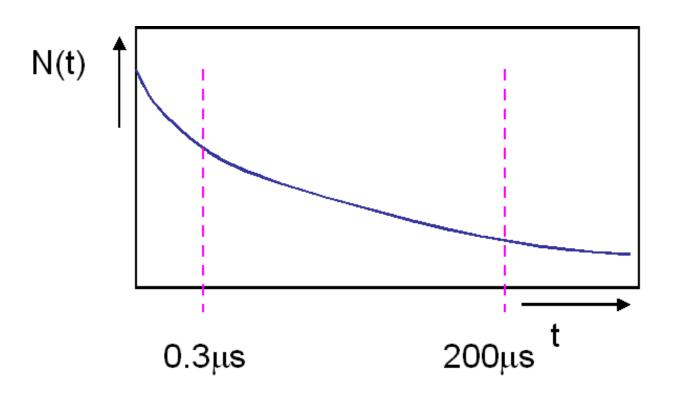
- LAB has lower optical absorption.
- 100% LAB and PC have similar light outputs.
- But LAB has 2X light output of 20% PC + 80% dodecane mixture.
- BNL Gd-PC has ~3X better optical absorption than Bicron BC-521.

Dick Hahn

RLH-7


aenn

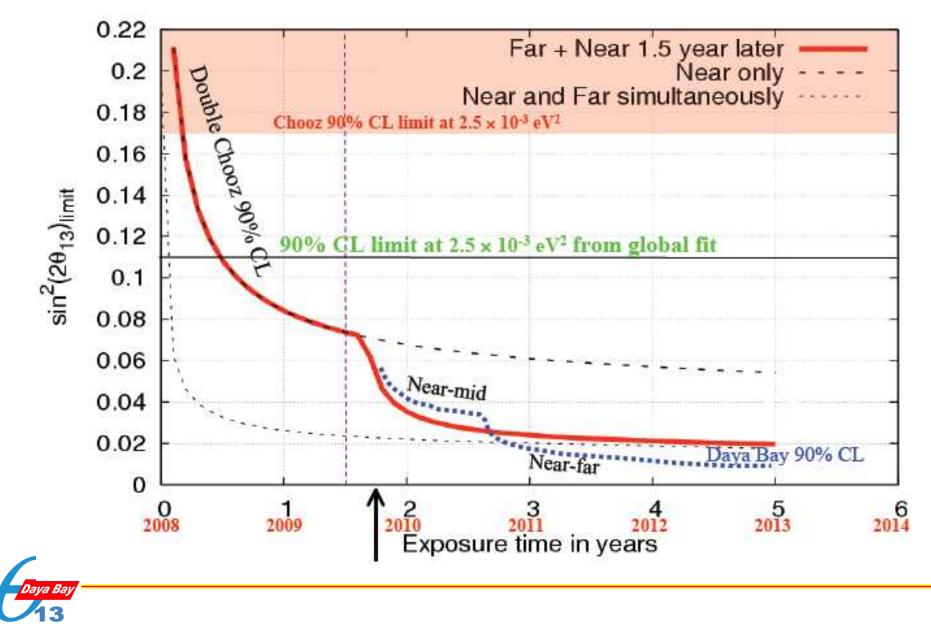
H/C Ratio


Bob Mckeown

- Combustion analysis (<0.3%?)
- Neutron capture/scattering (R&D)
- Filling detector pairs from common batch

Neutron Time Cuts

These cut times must be the same to ~10ns for all modules \rightarrow use common clock


 \rightarrow 0.05% contribution to neutron efficiency

Bob Mckeown

Daya Bay/Chooz comparison

Kam-Biu Luk

