

Six Femtobarn Photon Searches from CDF

$\gamma\gamma MEt \bullet \gamma\gamma \ l \bullet \gamma\gamma\gamma \bullet \gamma\gamma \ mass \bullet \ l\gamma X \bullet \ l\gamma bMEt$

October 31, 2006

Ray Culbertson

DPF 2006

All CDF Photon Results

Cross sections

γγ γ+b W/Z→lv/ll+γ W/Z→jets+γ

Searches

γ MEt e* in eeγ μ* in μμγ γγ mass peaks γγMEt, γγl, γγγ *l*γ+X *l*γbMEt delayed photons 200pb⁻¹ 340pb/230pb⁻¹ 200pb⁻¹ 180pb⁻¹ PRL 95, 022003 (2005) *see Mario Campanelli's talk* PRL 94, 041803 (2004) available

70pb⁻¹ 200pb⁻¹ 370pb⁻¹ 1.1fb⁻¹ 1.1fb⁻¹ 300pb⁻¹/930pb⁻¹ 0.9fb⁻¹ 500pb⁻¹ available
PRL 94, 101802 (2005)
submitted to PRL
this talk
this talk
PRL 97, 031801 (2006)/this talk
this talk *see Max Goncharov's talk*

Photon Triggers and Selections

DiPhoton triggers

 $2 \times \text{Et} > 12$, w/cal iso $2 \times \text{Et} > 18$, wo/cal iso

Photon triggers

Et > 25, w/cal iso Et > 50, wo/cal iso

plus ... photon+muon, photon+b, photon+2jet, triphoton

<u>Central Cuts</u> (η <1.0)

- Had/EM <0.055
- Calorimeter Iso, cone 0.4 < 2 GeV
- cluster in shower max, good χ^2
- small leading track Pt < 1 GeV
- track isolation, cone 0.4 < 2 GeV
- second Sh.Max. cluster Et < 2 to 3 GeV

MEt search adds anti-cosmic cuts:

EM TDC times (when available), jet topology, unattached muon stubs All analyses use $Z \rightarrow$ ee and minbias to study/correct ID efficiencies

Forward Cuts (1.2< η <2.8) Had/EM <0.05 Calorimeter Iso, cone 0.4 < 2 GeV cluster in shower max, good shape small leading track Pt < 1 GeV track isolation, cone 0.4 < 2 GeV tower shower shape, good χ^2

Two Techniques

<u>e_γ fake rate</u>

- almost all due to brem in detector
- Compare:
 - Z peak in ee
 - Z peak in e_γ
- take Et dependence from Monte Carlo

October 31, 2006

Phoenix Tracking

- seed a track from cal cluster and event vertex
- find forward electrons
- or reject electrons with evidence of an e brem in the Si tracking

e Ray Culbertson

Model

- Randall-Sundrum Gravitons
- Extra dimension is "warped", with parameter k
- S-channel Graviton yields e⁺e⁻,μ⁺μ⁻,γγ,... peaks at high-mass
- this search sensitive to any narrow diphoton peak <u>Analysis</u>
- 2 central-central or central-forward photons
- Et>15 GeV
- Mass > 30 GeV

central-central and central-forward have complimentary acceptence

Ray Culbertson

DPF 2006

Data sample

- 1.2 fb⁻¹

- Highest mass events: central-central: 602 GeV central-forward: 454 GeV
 no significant MEt
- no significant MEt observed in high-mass events
- No sign of cosmics which brem in calorimeters

this background is not used in setting limits

October 31, 2006

Ray Culbertson

Limits

- Fit spectrum to Diphox + exponentials
- fit central-central and central-forward separately
- no normalization constraints
- limits from binned maximum likelihood with Monte Carlo signal shape times efficiency

Randall-Sundrum Graviton Limits

- for $k/M_{pl}=0.1$, M(G)>850 GeV
- combined with e^+e^- RS search result: M(G)>875 GeV
- $\gamma\gamma$ has larger BR, better acceptance due to spin effects

Ray Culbertson

Search in Diphoton and Met

Sample

- 1.2 fb⁻¹
- Two central photons with Et>13
- Signature-based **<u>Remove</u>** fake MEt
- remove jets along MEt - use lowest MEt vertex **Remove Ewk**
- W \rightarrow e \rightarrow y by brem rejected by Phoenix **Remove non-collision**
- EM timing
- extra muon stubs

Search for $\gamma\gamma + \not\!\!\! E_{\tau}$, Signal sample

Search in Diphoton and Met

QCD background

MEt Model from control samples
predict MEt from energy and expected resolution

Ewk background

- $e+\gamma$ sample times $e \rightarrow \gamma$ fake rate **Non-Collision background**

-no-vertex and out-of-time control samples

Total background, MEt>50GeV: 1.6 ± 0.3 , 4 observed

Search for Diphotons and Leptons

<u>Sample</u>

- Same diphotons
- 1.0 to 1.1fb⁻¹
- top-like leptons:

Backgrounds:

- Ewk *lγ*γ (MadGraph) Denominator
 - times fake rate for:
- jets faking leptons
- jets faking photons
- electrons faking photons

Electrons

- Central e Et>20 GeV
- Forward e Et>20 GeV, including Phoenix tracks

Muons

- Central µ Pt>20 GeV
- Forward (CMX) μ Pt>20 GeV

Before applying Phoenix rejection					
Source	electron	muon			
$Z\gamma\gamma$	$0.904 \pm 0.023 \pm 0.085$	$0.552 \pm 0.017 \pm 0.050$			
$W\gamma\gamma$	$0.170 \pm 0.012 \pm 0.016$	$0.086 \pm 0.008 \pm 0.008$			
Fake $l+\gamma\gamma$	$0.131 \pm 0.004 \pm 0.053$	$0.004 \pm 0.003 \pm 0.002$			
$l\gamma + \text{jet} \rightarrow \gamma$	$0.475 \pm 0.025 \pm 0.312$	$0.133 \pm 0.013 \pm 0.090$			
$l\gamma + e \rightarrow \gamma$	$5.140 \pm 0.340 \pm 0.584$	$0.017 \pm 0.017 \pm 0.002$			
Total 6.82 ± 0.75		0.79 ± 0.11			
Data	3	0			

Search for Diphotons and Leptons

Search for Triphotons

Sample

- 1155 pb⁻¹
- Start with same diphotons
- add a third central photon with Et>13 GeV

Backgrounds

S.M. Triphotons
from MadGraph: 0.8 ± 0.15 At least one fake: 1.4 ± 0.6 Total: 2.2 ± 0.6 Observed:4

Ray Culbertson

- In Run I, in $\mu\gamma$ MEt, expected 4 and observed 11
- Repeat the Run I analysis, so kinematics are completely a priori

<u>Sample</u>

- 930 pb⁻¹
- Require:
 - tight central electron
 or muon, Et (Pt)>25 GeV
 - ♦ central photon, Et>25 GeV
- Look for
 - More Photons
 - Loose central or plug electron
 - Loose central muons
 - ♦MEt > 25 GeV

Backgrounds

- W/Zγ, W/Zγγ Baur and MadGraph Monte Carlo
- $e \rightarrow \gamma$ fake rate
- jet $\rightarrow \gamma$
 - iso method (see next)
- jet $\rightarrow l$ fake rate

Iso technique

- Find isolated shower isolation distribution from Z→e⁻e⁺
- From non-isolated shape from jets
- Fit candidates calorimeter isolation distribution to the two shapes

Ray Culbertson

ht = scalar sum of Et from photons, leptons, jets, and MEt

	CDF Run II Preliminary, $929pb^{-1}$					
arounds	Lepton + Photon + E_T + b Events, Isolated Leptons					
grounus	Standard Model Source	$e\gamma b \mathbb{E}_{\mathrm{T}}$	$\mu\gamma b \mathbb{E}_{\mathrm{T}}$	$(e + \mu)\gamma b \mathbb{E}_{\mathrm{T}}$		
stly fakes	$t\bar{t}\gamma$	0.32 ± 0.036	0.21 ± 0.025	0.53 ± 0.058		
June 1	$W^{\pm}c\gamma$	0.14 ± 0.031	0.14 ± 0.029	0.28 ± 0.048		
ecially tags	$W^{\pm}cc\gamma$	0.023 ± 0.010	0.048 ± 0.014	0.071 ± 0.018		
1 1	$W^{\pm}bb\gamma$	0.14 ± 0.024	0.099 ± 0.018	0.24 ± 0.035		
observed,	WZ	0.029 ± 0.014	0.0 ± 0.0075	0.029 ± 0.016		
27 ± 1.50	$Z(\tau\tau)\gamma$	0.041 ± 0.041	0.11 ± 0.063	0.15 ± 0.076		
$.37 \pm 1.52$	$ee \not\!$	1.04961 ± 0.21	—	1.04961 ± 0.21		
avpactad	$\mu e \not \!$	_	0.24 ± 0.08	0.24 ± 0.08		
expected	Jet faking $\gamma \ (ej \not E_T b, j \rightarrow \gamma)$	0.73 ± 0.34	0.46 ± 0.20	1.19 ± 0.028		
	MisTags	2.85 ± 0.35	1.89 ± 0.26	4.74 ± 0.51		
	QCD(Jets faking ℓ and $\not\!\!\!E_T)$	2.85 ± 1.32	0.0 ± 0.50	2.85 ± 1.41		
	Total SM Prediction	$8.17 \pm 1.43 (tot)$	$3.20 \pm 0.60 (tot)$	$11.37 \pm 1.52(tot)$		
	Observed in Data	7	8	15		

Backgrou

- Mostly fa Especial - 15 observ $11.37 \pm$

ttbar Selection

- create a subsample
- related to t t h⁰
- sensitive to t charge
- require Ht>200GeV (*a priori* top-like cut)

Results

- 10 observed,
 - 4.7 ± 1.0 expected
- ttγ is still out of reach

Ray Culbertson

CDF Run II Preliminary 929 pb

Ultimate Signature-based Search

- Several of these photon results were "signature-based"
- This idea, taken to the logical conclusion is Sleuth
- Automate searches to all high-Pt regions, all signatures
- Fit efficiencies, fake rates and k-factors to the data,
- Apply these to a complete Monte Carlo description of the data (*See talk by Georgios Choudalakis on Wednesday*) Distributions for photon+2jets+MEt:

October 31, 2006

Ray Culbertson

CDF has released recently, shown here: $\gamma\gamma$ MEt $\gamma\gamma$ mass $\gamma\gamma$ l $1\gamma X$ $\gamma\gamma\gamma$ 1γ bMEt

Also Appearing Now at DPF

γb Cross section delayed photons Sleuth

CDF photon program is going strong...

Ray Culbertson