Six Femtobarn Photon Searches from CDF

\(\gamma\gamma\text{MET} \cdot \gamma\gamma l \cdot \gamma\gamma \cdot \gamma\gamma\text{ mass} \cdot l\gamma X \cdot l\gamma b\text{MET}\)
All CDF Photon Results

Cross sections

<table>
<thead>
<tr>
<th>Process</th>
<th>Cross Section (pb^-1)</th>
<th>Reference / Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma\gamma$</td>
<td>200</td>
<td>PRL 95, 022003 (2005)</td>
</tr>
<tr>
<td>$\gamma+b$</td>
<td>340/230</td>
<td>see Mario Campanelli's talk</td>
</tr>
<tr>
<td>$W/Z\to lv/\ell+\gamma$</td>
<td>200</td>
<td>PRL 94, 041803 (2004)</td>
</tr>
<tr>
<td>$W/Z\to jets+\gamma$</td>
<td>180</td>
<td>available</td>
</tr>
</tbody>
</table>

Searches

<table>
<thead>
<tr>
<th>Process</th>
<th>Cross Section (pb^-1)</th>
<th>Reference / Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ MEt</td>
<td>70</td>
<td>available</td>
</tr>
<tr>
<td>e^* in $ee\gamma$</td>
<td>200</td>
<td>PRL 94, 101802 (2005)</td>
</tr>
<tr>
<td>μ^* in $\mu\mu\gamma$</td>
<td>370</td>
<td>submitted to PRL</td>
</tr>
<tr>
<td>$\gamma\gamma$ mass peaks</td>
<td>1.1</td>
<td>this talk</td>
</tr>
<tr>
<td>$\gamma\gamma$ MEt, $\gamma \ell$, $\gamma \gamma$</td>
<td>1.1</td>
<td>this talk</td>
</tr>
<tr>
<td>$l\gamma+X$</td>
<td>300/930</td>
<td>PRL 97, 031801 (2006)/this talk</td>
</tr>
<tr>
<td>$l\gamma b$ MEt</td>
<td>0.9</td>
<td>this talk</td>
</tr>
<tr>
<td>delayed photons</td>
<td>500</td>
<td>see Max Goncharov's talk</td>
</tr>
</tbody>
</table>
Photon Triggers and Selections

<table>
<thead>
<tr>
<th>DiPhoton triggers</th>
<th>Photon triggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 \times E_t > 12$, w/cal iso</td>
<td>$E_t > 25$, w/cal iso</td>
</tr>
<tr>
<td>$2 \times E_t > 18$, wo/cal iso</td>
<td>$E_t > 50$, wo/cal iso</td>
</tr>
</tbody>
</table>

plus ... photon+muon, photon+b, photon+2jet, triphoton

Central Cuts ($\eta<1.0$)
- Had/EM <0.055
- Calorimeter Iso, cone 0.4 < 2 GeV
- cluster in shower max, good χ^2
- small leading track Pt < 1 GeV
- track isolation, cone 0.4 < 2 GeV
- second Sh.Max. cluster Et < 2 to 3 GeV

Forward Cuts (1.2<η<2.8)
- Had/EM <0.05
- Calorimeter Iso, cone 0.4 < 2 GeV
- cluster in shower max, good shape
- small leading track Pt < 1 GeV
- track isolation, cone 0.4 < 2 GeV
- tower shower shape, good χ^2

MEt search adds anti-cosmic cuts:
- EM TDC times (when available), jet topology, unattached muon stubs

All analyses use $Z \rightarrow \text{ee}$ and minbias to study/correct ID efficiencies
Two Techniques

e→γ fake rate
- almost all due to brem in detector
- Compare:
 Z peak in ee
 Z peak in eγ
- take Et dependence from Monte Carlo

Phoenix Tracking
- seed a track from cal cluster and event vertex
- find forward electrons
- or reject electrons with evidence of an e brem in the Si tracking

\(\gamma^2 / \text{n.dof} = 24.41 / 15 \)
\(\text{Prob} = 0.05846 \)
\(p_0 = -2.991 \pm 0.143 \)
\(p_1 = -0.04524 \pm 0.00773 \)
\(p_2 = 0.00728 \pm 0.00145 \)

Gen 5 + Gen 6 Drell Yan MC
\(\gamma = e^{p_0 + p_1 x + p_2} \)
Search for Diphoton Peaks

Model
- Randall-Sundrum Gravitons
- Extra dimension is "warped", with parameter k
- S-channel Graviton yields $e^+e^-, \mu^+\mu^-, \gamma\gamma, \ldots$ peaks at high-mass
- this search sensitive to any narrow diphoton peak

Analysis
- 2 central-central or central-forward photons
- $E_t > 15$ GeV
- Mass > 30 GeV

central-central and central-forward have complimentary acceptance

October 31, 2006 Ray Culbertson DPF 2006
Search for Diphotoon Peaks

Data sample
- 1.2 fb$^{-1}$
- Highest mass events:
 central-central: 602 GeV
 central-forward: 454 GeV
- no significant MEt observed in high-mass events
- No sign of cosmics which brem in calorimeters

γγ Mass in bins of 1σ mass resolution
Search for Diphoton Peaks

SM Diphoton Background
- NLO Diphox calculation
- normalized by luminosity

Jets Faking Photons
- mostly hard π^0's
- Mass shape from a sample of loose diphoton candidates
- normalized to low mass - DiPhox

This background is not used in setting limits
Search for Diphoton Peaks

Limits
- Fit spectrum to Diphox + exponentials
- fit central-central and central-forward separately
- no normalization constraints
- limits from binned maximum likelihood with Monte Carlo signal shape times efficiency
Randall-Sundrum Graviton Limits

- for \(k/M_{\text{pl}} = 0.1 \), \(M(G) > 850 \text{ GeV} \)
- combined with \(e^+e^- \) RS search result: \(M(G) > 875 \text{ GeV} \)
- \(\gamma\gamma \) has larger BR, better acceptance due to spin effects
Search in Diphoton and Met

Sample
- 1.2 fb⁻¹
- Two central photons with Et>13
- Signature-based

Remove fake MEt
- remove jets along MEt
- use lowest MEt vertex

Remove Ewk
- W→e→γ by brem rejected by Phoenix

Remove non-collision
- EM timing
- extra muon stubs

Ht = scalar sum of Et from photons, leptons, jets, and MEt
Search in Diphoton and Met

QCD background
- MEt Model from control samples
- predict MEt from energy and expected resolution

Ewk background
- e+γ sample times e→γ fake rate

Non-Collision background
- no-vertex and out-of-time control samples

Total background, MEt>50GeV: 1.6 ± 0.3, 4 observed

Search for γγ+\(\not{E}_T\), Signal sample

CDF Run II Preliminary, 1.2 fb\(^{-1}\)
- Data, \(\not{E}_T\)>20 GeV
- QCD + fake \(\not{E}_T\)
- eγ events
- Non-Collision

Search for γγ+\(\not{E}_T\), Signal sample

CDF Run II Preliminary, 1.2 fb\(^{-1}\)
- Data
- QCD + fake \(\not{E}_T\)
- eγ events
- Non-Collision
Search for Diphotons and Leptons

Sample
- Same diphotons
- 1.0 to 1.1 fb$^{-1}$
- top-like leptons:

Backgrounds:
- Ewk $l\gamma\gamma$ (MadGraph)

Electrons
- Central e Et>20 GeV
- Forward e Et>20 GeV, including Phoenix tracks

Muons
- Central μ Pt>20 GeV
- Forward (CMX) μ Pt>20 GeV

<table>
<thead>
<tr>
<th>Source</th>
<th>Before applying Phoenix rejection electron</th>
<th>Before applying Phoenix rejection muon</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z\gamma\gamma$</td>
<td>$0.904 \pm 0.023 \pm 0.083$</td>
<td>$0.552 \pm 0.017 \pm 0.050$</td>
</tr>
<tr>
<td>$W\gamma\gamma$</td>
<td>$0.170 \pm 0.012 \pm 0.016$</td>
<td>$0.086 \pm 0.008 \pm 0.008$</td>
</tr>
<tr>
<td>Fake $l+\gamma\gamma$</td>
<td>$0.131 \pm 0.004 \pm 0.053$</td>
<td>$0.004 \pm 0.003 \pm 0.002$</td>
</tr>
<tr>
<td>$l\gamma + \text{jet} \rightarrow \gamma$</td>
<td>$0.475 \pm 0.025 \pm 0.312$</td>
<td>$0.133 \pm 0.013 \pm 0.090$</td>
</tr>
<tr>
<td>$l\gamma + e \rightarrow \gamma$</td>
<td>$5.140 \pm 0.340 \pm 0.584$</td>
<td>$0.017 \pm 0.017 \pm 0.002$</td>
</tr>
<tr>
<td>Total</td>
<td>6.82 ± 0.75</td>
<td>0.79 ± 0.11</td>
</tr>
<tr>
<td>Data</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Search for Diphotons and Leptons

October 31, 2006
Ray Culbertson
DPF 2006
Search for Triphotons

Sample
- 1155 pb⁻¹
- Start with same diphotons
- Add a third central photon with Et>13 GeV

Backgrounds
S.M. Triphotons from MadGraph: 0.8 ± 0.15
At least one fake: 1.4 ± 0.6
Total: 2.2 ± 0.6
Observed: 4
Search for Lepton+Photon+X

- In Run I, in $\mu \gamma \text{MET}$, expected 4 and observed 11
- Repeat the Run I analysis, so kinematics are completely \textit{a priori}

\textbf{Sample}

- 930 pb$^{-1}$
- Require:
 - tight central electron or muon, $E_T (P_T) > 25$ GeV
 - central photon, $E_T > 25$ GeV
- Look for
 - More Photons
 - Loose central or plug electron
 - Loose central muons
 - $\text{MET} > 25$ GeV

\textbf{Backgrounds}

- $W/Z\gamma$, $W/Z\gamma\gamma$ Baur and MadGraph Monte Carlo
- $e \rightarrow \gamma$ fake rate
- $\text{jet} \rightarrow \gamma$
 - iso method (see next)
- $\text{jet} \rightarrow l$ fake rate
Search for Lepton+Photon+X

Iso technique
- Find isolated shower isolation distribution from $Z \rightarrow e^-e^+$
- From non-isolated shape from jets
- Fit candidates calorimeter isolation distribution to the two shapes

![Graph showing Photon IsoEt distribution with statistical parameters](image)
Search for Lepton+Photon+X

eγMET
Expect 94.2 ± 8.1
Observe 96

μγMET
Expect 53.9 ± 7.1
Observe 67
Search for Lepton+Photon+X

\(e\gamma\)
Expect \(39.0 \pm 4.8\)
Observe 53

\(\mu\gamma\)
Expect \(26.0 \pm 3.1\)
Observe 21

\(e\mu\gamma\)
0 observed,
1.0 \(\pm 0.3\) expected

\(l\gamma\) \(\text{MET}>25\) \(\text{GeV}\)
3 observed,
0.6 \(\pm 0.1\) expected

\(l\gamma\gamma\)
0 observed
0.5 \(\pm 0.1\) expected
Search for $l\gamma\not{E}_T$.

Sample
- 929 pb$^{-1}$
- Lepton: central, $E_T>20$ GeV
- Photon: central, $E_T>10$ GeV
- Standard secondary vertex tag, $E_T>15$ GeV, $|\eta|<2$
- $M_E T > 20$ GeV

$H_T =$ scalar sum of E_T from photons, leptons, jets, and $M_E T$.
Search for $l \gamma \not{E}_T b$

Backgrounds
- Mostly fakes
- Especially tags
- 15 observed, 11.37 ± 1.52 expected

<table>
<thead>
<tr>
<th>Standard Model Source</th>
<th>$e \gamma b \not{E}_T$</th>
<th>$\mu \gamma b \not{E}_T$</th>
<th>$(e + \mu) \gamma b \not{E}_T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}\gamma$</td>
<td>0.32 ± 0.036</td>
<td>0.21 ± 0.025</td>
<td>0.53 ± 0.058</td>
</tr>
<tr>
<td>$W^\pm c\gamma$</td>
<td>0.14 ± 0.031</td>
<td>0.14 ± 0.029</td>
<td>0.28 ± 0.048</td>
</tr>
<tr>
<td>$W^\pm c\gamma$</td>
<td>0.023 ± 0.010</td>
<td>0.048 ± 0.014</td>
<td>0.071 ± 0.018</td>
</tr>
<tr>
<td>$W^\pm b\gamma$</td>
<td>0.14 ± 0.024</td>
<td>0.099 ± 0.018</td>
<td>0.24 ± 0.035</td>
</tr>
<tr>
<td>WZ</td>
<td>0.029 ± 0.014</td>
<td>0.0 ± 0.0075</td>
<td>0.029 ± 0.016</td>
</tr>
<tr>
<td>$Z(\tau\tau)\gamma$</td>
<td>0.041 ± 0.041</td>
<td>0.11 ± 0.063</td>
<td>0.15 ± 0.076</td>
</tr>
</tbody>
</table>

ee $\not{E}_T b$, $e \rightarrow \gamma$	1.04961 ± 0.21	--	1.04961 ± 0.21
$\mu e \not{E}_T b$, $e \rightarrow \gamma$	--	0.24 ± 0.08	0.24 ± 0.08
Jet faking γ ($e j \not{E}_T b$, $j \rightarrow \gamma$)	0.73 ± 0.34	0.46 ± 0.20	1.19 ± 0.028
MisTags	2.85 ± 0.35	1.89 ± 0.26	4.74 ± 0.51
QCD(Jets faking ℓ and \not{E}_T)	2.85 ± 1.32	0.0 ± 0.50	2.85 ± 1.41

Total SM Prediction: $8.17 \pm 1.43 (\text{tot})$, $3.20 \pm 0.60 (\text{tot})$, $11.37 \pm 1.52 (\text{tot})$

Observed in Data: 7, 8, 15
Search for $l \gamma \not{E}_T b$

ttbar Selection
- create a subsample
- related to $t \bar{t} h^0$
- sensitive to t charge
- require $H_t > 200$ GeV
 (a priori top-like cut)

Results
- 10 observed,
 4.7 ± 1.0 expected
- $tt\gamma$ is still out of reach
Ultimate Signature-based Search

- Several of these photon results were “signature-based”
- This idea, taken to the logical conclusion is Sleuth
- Automate searches to all high-Pt regions, all signatures
- Fit efficiencies, fake rates and k-factors to the data,

Apply these to a complete Monte Carlo description of the data

(See talk by Georgios Choudalakis on Wednesday)

Distributions for photon+2jets+MEt:

October 31, 2006
Ray Culbertson
DPF 2006
CDF has released recently, shown here:

\[\gamma\gamma \text{MET} \quad \gamma\gamma \text{mass} \quad \gamma\gamma l \]
\[l\gamma X \quad \gamma\gamma \quad l\gamma \text{bMET} \]

Also Appearing Now at DPF

\[\gamma \text{b Cross section} \]
\[\text{delayed photons} \]
\[\text{Sleuth} \]

CDF photon program is going strong...