Studies of Charm Meson Decays at BaBar

Kalanand Mishra

University of Cincinnati On behalf of the BaBar Collaboration

DPF 06, Honolulu, October 31, 2006

Outline

- Measurements of the ratio of branching fractions for the decays
 - D⁺→π⁺π⁰, K⁺π⁰
 - $D^0 \rightarrow \pi^- \pi^+ \pi^0$, $K^- K^+ \pi^0$

Phys.Rev.D74:011107,2006

hep-ex / 0608009, 2006, submitted to PRD

- Amplitude (Dalitz plot) analysis of the decays
 - D⁰→K⁻K⁺π⁰
 - D_s⁺→K⁺K⁻π⁺

B.R. of the Decays D⁺ $\rightarrow \pi^{+}\pi^{0}$, K⁺ π^{0}

- Use the decay $D^+ \rightarrow K^+ \pi^+ \pi^+$ as reference for normalization.

- Reconstruct the decay chain: [$D^{*+} \rightarrow D^{+}\pi^{0}_{s}$, $D^{+} \rightarrow h^{+}\pi^{0}$, $K^{-}\pi^{+}\pi^{+}$, $\pi^{0} \rightarrow \gamma\gamma$].

- Reject the events with D⁺ NOT coming from D⁺⁺ decay (for cleaner signal).

Motivation

- 1. Measurement of the Cabibbo-suppressed branching ratio $D^+ \rightarrow \pi^+ \pi^0$.
- 2. The first measurement of $D^+ \rightarrow K^+ \pi^0$ branching ratio.

The description of charge conjugate decay is implied throughout this presentation unless explicitly stated otherwise.

Signal Reconstruction Efficiency

$$\begin{aligned} \mathbf{.} D^{*+} &\to D^{+} \pi^{0}_{\text{ soft}}, \ D^{+} \to \pi^{+} \pi^{0} & 7.8\% \\ \mathbf{.} D^{*+} &\to D^{+} \pi^{0}_{\text{ soft}}, \ D^{+} \to K^{+} \pi^{0} & 5.9\% \\ \mathbf{.} D^{*+} \to D^{+} \pi^{0}_{\text{ soft}}, \ D^{+} \to K^{-} \pi^{+} \pi^{+} & 8.5\% \end{aligned}$$

Event Reconstruction

- P_{CM} (D^{*}) > 2.9 GeV/c
- |m_{D*} m _{D+} | < 155 MeV/c²

DPF 06, Honolulu, October 31, 2006

Signal Yield

Signal Yield continued

- Signal events are modeled by bifurcated Gaussian functions.
- Combinatorial backgrounds are modeled by linear functions.

DPF 06, Honolulu, October 31, 2006

Results and Conclusion

$$\begin{split} & B(\mathrm{D}^+ \to \pi^+ \pi^0) \; / \; B \; (\mathrm{D}^+ \to \mathrm{K}^- \pi^+ \pi^+) = (\; 1.33 \pm 0.11 \; (\mathrm{stat}) \pm 0.09 \; (\mathrm{sys}) \;) \; x \; 10^{-2} \\ & B(\mathrm{D}^+ \to \mathrm{K}^+ \pi^0) \; / \; B(\mathrm{D}^+ \to \mathrm{K}^- \pi^+ \pi^+) \; = (\; 2.68 \pm 0.50 \; (\mathrm{stat}) \pm 0.26 \; (\mathrm{sys}) \;) \; x \; 10^{-3} \end{split}$$

using $B(D^+ \rightarrow K^-\pi^+\pi^+) = (9.4 \pm 0.3) \times 10^{-2}$,

Phys.Rev.D74:011107,2006

 $B(D^+ \rightarrow \pi^+\pi^0) = (1.25 \pm 0.10 \text{ (stat)} \pm 0.09 \text{ (sys)} \pm 0.04 \text{ (ref)}) \times 10^{-3}$

 $B(D^+ \rightarrow K^+\pi^0) = (2.52 \pm 0.47 \text{ (stat)} \pm 0.25 \text{ (sys)} \pm 0.08 \text{ (ref)}) \times 10^{-4}$

Excellent kaon ID has contributed significantly to the sensitivity of this measurement.

Comparison to the current PDG values :

•D⁺ $\rightarrow \pi^{+}\pi^{0}$ world average (2006) $B(D^{+}\rightarrow\pi^{+}\pi^{0}) = (1.28 \pm 0.09) \times 10^{-3}$

•D⁺ → K⁺π⁰ world average (2006) $B(D^+ → K^+π^0) < 4.2 \times 10^{-4}$ at 90% CL

This is the first measurement of the doubly Cabibbo-suppressed decay $D^+ \rightarrow K^+ \pi^0$ [The CLEO-c collaboration recently made a new measurement which is consistent with our result: $B(D^+ \rightarrow K^+ \pi^0) = (2.25 \pm 0.36 \text{ (stat)} \pm 0.15 \text{ (sys)} \pm 0.07 \text{ (ref)}) \times 10^{-4}$]. hep-ex/0607075 Preliminary result

B.R. of the Decays $D^0 \rightarrow \pi^- \pi^+ \pi^0$, $K^- K^+ \pi^0$

Use the the Cabibbo-favored decay $D^0 \rightarrow K^*\pi^+\pi^0$ as reference for normalization. Reconstruct the decay chain: [$D^{*+} \rightarrow D^0\pi_s^+$, $D^0 \rightarrow h^+h^+\pi^0$, $\pi^0 \rightarrow \gamma\gamma$] and c.c.

Motivation

- 1. Precision measurement of the branching ratios of 3-body Cabibbo-suppressed decays of D⁰.
- To investigate the anomaly in the BR of 2- & 3-body CS decays of D⁰.

The charge of the π_{soft} determines the charm content of the D⁰ meson (i.e., whether it is D⁰ or $\overline{D^0}$).

Background Sources

- Combinatorial
- > Kππ⁰ reflection in πππ⁰ and KKπ⁰ modes

Event Reconstruction

- ➢ P_{CM} (D⁰) > 2.77 GeV/c
- \geq $|m_{D^*} m_{D^0} 145.5| < 0.6 \text{ MeV/c}^2$

Fit for Signal Yield

Background Events in Monte Carlo

Note Log y-scale.

- Above: three-body invariant mass distributions of $D^0 \rightarrow \pi^- \pi^+ \pi^0$ and $D^0 \rightarrow K^-K^+\pi^0$ events in generic cc Monte Carlo (MC).
- $K^-\pi^+\pi^0$ reflection events peak in the sidebands of $\pi^-\pi^+\pi^0$, $K^-K^+\pi^0$.
- We take the shape of the reflection from MC and obtain the number of reflection events by fitting their distribution in data.

Reconstruction Efficiency

Results and Conclusion

		D ⁰ decay mode	Our Results(%)	PDG-2006 (%)			
The	decay rate for each	B(π ⁻ π ⁺ π ⁰)/B(K ⁻ π ⁺ π ⁰)	10.59 ± 0.06 ± 0.13	8.40 ± 3.11			
mode		B(K ⁻ K ⁺ π ⁰)/B(K ⁻ π ⁺ π ⁰)	$2.37 \pm 0.03 \pm 0.04$	0.95 ± 0.26			
$\Gamma = \langle \mathbf{M} ^2 \rangle, \Phi$							
when $M = c$ $\Phi =$	re decay matrix element phase space factor	> 5σ difference with PDG value. Excellent PID performance has greatly improved the the sensitivity of this measurement.	Using 2-body B.R. values from PD $ M ^{2}(\pi^{-}\pi^{+})/ M ^{2}(K^{-}\pi^{+}) = 0.034 \pm 0.001$ $ M ^{2}(K^{-}K^{+})/ M ^{2}(K^{-}\pi^{+}) = 0.111 \pm 0.002$ $ M ^{2}(K^{-}K^{+})/ M ^{2}(\pi^{-}\pi^{+}) = 3.53 \pm 0.12$				
=	For 3-body decays: are For 2-body decays: mo	a of the Dalitz plot mentum of either	Very different from naïve expectations (see the orange box below).				
	daughter in D ⁰ rest frar	ne.					
Using branching ratio values from above table: $ M ^{2}(\pi^{-}\pi^{+}\pi^{0})/ M ^{2}(K^{-}\pi^{+}\pi^{0}) = 0.0668 \pm 0.0004 \pm 0.0008$ $ M ^{2}(K^{-}K^{+}\pi^{0})/ M ^{2}(K^{-}\pi^{+}\pi^{0}) = 0.0453 \pm 0.0006 \pm 0.0008$ $ M ^{2}(K^{-}K^{+}\pi^{0})/ M ^{2}(\pi^{-}\pi^{+}\pi^{0}) = 0.678 \pm 0.014 \pm 0.021$ $(M^{2}(K^{-}K^{+}\pi^{0})/ M ^{2}(\pi^{-}\pi^{+}\pi^{0}) = 0.678 \pm 0.014 \pm 0.021$ $(M^{2}(K^{-}K^{+}\pi^{0})/ M ^{2}(\pi^{-}\pi^{+}\pi^{0}) = 0.678 \pm 0.014 \pm 0.021$							
	(Naive expectation = 1.0) $\frac{100}{100}$						

hep-ex / 0608009, 2006, submitted to PRD

Amplitude Analysis of D and D_s decays

Amplitude Analysis of the Decay $D^0 \rightarrow K^+ \pi^0^{\bigoplus BABAR}$

Isobar Model Formalism

three-body decay $D \rightarrow ABC$ decaying through an r=[AB] resonance

I=1/2 K π S-wave Parameterization

- $K\pi$ S-wave in mass range 0.6–1.4 GeV/c² is not well-understood. A possible κ state ~ 800 MeV/c² has been conjectured, but this has only been reported in the neutral state.
- For the $K^+\pi^0$ and $K^-\pi^0$ S-wave amplitudes, we try three models:
 - Amplitude obtained from LASS $K^-\pi^+ \rightarrow K^-\pi^+$ scattering.

Nucl. Phys. B296, 493 (1988); W. Dunwoodie, web notes.

- $K^-\pi^+$ amplitude extracted from a model-independent partial-wave analysis of $D^+ \rightarrow K^-\pi^+\pi^+$ decay by the E791 collaboration. Phys. Rev. D73, 032004 (2006)
- [coherent sum of $\kappa(800)$ + uniform NR + K^{*}₀(1430)]. { No evidence in K π elastic scattering. }

Fit Results

LASS parameterization for $K\pi$ S-wave

Component	Amplitude, a_{τ}	Phase, ϕ_r (°)	Fraction $(\%)$
$K^{*+}(892)$	1.0 (fixed)	0.0 (fixed)	$41.6 {\pm} 0.8 {\pm} 0.6$
$K^{*+}(1410)$	$0.99 {\pm} 0.15 {\pm} 0.17$	$92.4 \pm 12.2 \pm 19.5$	$0.7 \pm 0.2 \pm 0.2$
$[K^{+}\pi^{0}](S)$	$3.85 \pm 0.12 \pm 0.71$	$85.2 \pm 3.5 \pm 13.2$	$8.1 \pm 0.6 \pm 1.3$
$\phi(1020)$	$0.72 \pm 0.01 \pm 0.03$	$-15.0 \pm 4.8 \pm 1.6$	$19.0 \pm 0.7 \pm 0.7$
$f_0(980)$	$0.60 \pm 0.08 \pm 0.08$	$97.7 \pm 6.0 \pm 7.9$	$3.0\pm0.8\pm0.7$
$f_2'(1525)$	$0.85 \pm 0.15 \pm 0.08$	$-41.8 \pm 6.7 \pm 5.9$	$0.6 \pm 0.2 \pm 0.1$
$K^{*-}(892)$	$0.64 {\pm} 0.01 {\pm} 0.01$	$-37.9 \pm 2.2 \pm 4.2$	$16.8 \pm 0.8 \pm 0.2$
$K^{*-}(1410)$	$2.93{\pm}0.20{\pm}0.34$	$177.3 {\pm} 3.0 {\pm} 19.4$	$5.1 \pm 0.8 \pm 1.3$
$[K^{-}\pi^{0}](S)$	$3.05 \pm 0.24 \pm 0.17$	$156.9 \pm 3.7 \pm 6.0$	$6.2 \pm 0.9 \pm 0.4$

For $K\pi$ S-wave

- The best fit is LASS parameterization.
- E791 fit worse at low mass.

- κ model yields

mass $870 \pm 30 \text{ MeV/c}^2$ width $150 \pm 20 \text{ MeV/c}^2$ significantly different from the values reported previously for κ^0 .

These results are preliminary. We are investigating the $K\pi$ S-wave at lower mass, and contribution of K*(1410).

Analysis of Angular Moments

Excellent agreement between data & model.

Each event was weighted by the spherical harmonic $Y_{L}^{0}(\cos \theta_{H})$ (L=0,1,2,....).

For S- and P- waves in absence of cross-feeds from other channels (also, assuming negligible contributions from D- and higher waves):

r

$$\begin{cases} \sqrt{4\pi} \langle Y_0^0 \rangle = S^2 + P^2 \\ \sqrt{4\pi} \langle Y_1^0 \rangle = 2 |S| |P| \cos \phi_{SP} \\ \sqrt{4\pi} \langle Y_2^0 \rangle = \frac{2}{\sqrt{5}} P^2 \end{cases}$$

Significantly large interference between S and P waves.

Higher moments above 1 GeV are coming from cross channels.

Strong Phase Difference & Amplitude Ratio

The strong phase difference δ_D and relative amplitude r_D between the decays D⁰→K*⁻K⁺ and D⁰→K*⁺K⁻ are defined, neglecting direct CP violation in D⁰ decays, by the equation:

$$r_{D} e^{i\delta D} = [a_{K^{*}-K^{+}}/a_{K^{*}+K^{-}}] exp[i(\delta_{K^{*}-K^{+}} - \delta_{K^{*}-K^{+}})]$$

We find

 $\delta_D = -37.9^\circ \pm 2.2^\circ \text{ (stat)} \pm 0.7^\circ \text{ (exp sys)} \pm 4.2^\circ \text{ (model sys)}$ $r_D = 0.64 \pm 0.01 \text{ (stat)} \pm 0.01 \text{ (exp sys)} \pm 0.01 \text{ (model sys)}.$

These results are preliminary.

These measurements are consistent with the previous measurement by CLEO: $\delta_D = -28^\circ \pm 8^\circ (\text{stat}) \pm 2.9^\circ (\exp \text{sys}) \pm 10.6^\circ (\text{model sys})$ $r_D = 0.52 \pm 0.05 (\text{stat}) \pm 0.02 (\exp \text{sys}) \pm 0.04 (\text{model sys}).$

BaBar Preliminary

Amplitude Analysis of $D_s^+ \rightarrow K^+K^-\pi^+$ Decay

Data Sample = 240 fb⁻¹

University of Cincinnati

Fit Results

Decay Mode	Decay fraction(%)	Amplitude	Phase(radians)
$\bar{K}^{*}(892)^{0}K^{+}$	$48.7 \pm 0.2 \pm 1.6$	1.(Fixed)	0.(Fixed)
$\phi(1020)\pi^+$	$37.9 \pm 0.2 \pm 1.8$	$1.081 \pm 0.006 \pm 0.049$	$2.56 \pm 0.02 \pm 0.38$
$f_0(980)\pi^+$	$35 \pm 1 \pm 14$	$4.6 \pm 0.1 \pm 1.6$	$-1.04 \pm 0.04 \pm 0.48$
$\bar{K}_{0}^{*}(1430)^{0}K^{+}$	$2.0 \pm 0.2 \pm 3.3$	$1.07 \pm 0.06 \pm 0.73$	$-1.37 \pm 0.05 \pm 0.81$
$f_0(1710)\pi^+$	$2.0 \pm 0.1 \pm 1.0$	$0.83 \pm 0.02 \pm 0.18$	$-2.11 \pm 0.05 \pm 0.42$
$f_0(1370)\pi^+$	$6.3 \pm 0.6 \pm 4.8$	$1.74 \pm 0.09 \pm 1.05$	$-2.6 \pm 0.1 \pm 1.1$
$\bar{K}_{2}^{*}(1430)^{0}K^{+}$	$0.17 \pm 0.05 \pm 0.3$	$0.43 \pm 0.05 \pm 0.34$	$-2.5 \pm 0.1 \pm 0.3$
$f_2(1270)\pi^+$	$0.18 \pm 0.03 \pm 0.4$	$0.40\pm\ 0.04\ \pm 0.35$	$0.3 \pm 0.2 \pm 0.5$
Sum	$132 \pm 1.2 \pm 15.6$		
χ^2/NDF	1.5		

Angular moments : Excellent agreement with data

Large systematic uncertainty in $f_0(980)$ amplitude and phase because several different parameterizations were tried.

- Decay is <u>d</u>ominated by $D_s^+ \rightarrow K^{*0}K^+$, $\phi \pi^+$, and $f_0(980)\pi^+$
- f₀(980) contribution is large but has large systematic error as well.
- Higher mass f₀'s and D-wave resonances have small contributions.

Very small interference between S-wave ($\kappa(800)$?) and P-wave (K*(892)) => no $\kappa(800)$ contribution found.

DPF 06, Honolulu, October 31, 2006

Branching Ratios

- The decay $D_s^+ \rightarrow \phi \pi^+$ is frequently used as the D_s^+ reference decay mode for measurement of branching ratios.
- The previous analysis (E687) of this Dalitz plot was performed with ~ 700 events (vs. 10⁵ events in our case).
- Using Dalitz plot results, we make a precise measurement of the branching ratios of the decays $D_s^+ \rightarrow \phi \pi^+$ and $D_s^+ \rightarrow K^*(892)^0 K^+$ integrated over the whole phase space.

$$\begin{split} & B(D_{s}^{+} \rightarrow \phi \pi^{+}) / B(D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+}) &= 0.379 \pm 0.002 \text{ (stat)} \pm 0.018 \text{ (sys)} \\ & B(D_{s}^{+} \rightarrow \overline{K^{*}} (892)^{0} \text{ K}^{+}) / B(D_{s}^{+} \rightarrow K^{+} \text{K}^{-} \pi^{+}) = 0.487 \pm 0.002 \text{ (stat)} \pm 0.016 \text{ (sys)} \\ & \text{where } \phi \rightarrow K^{+} \text{K}^{-} \text{ and } \overline{K^{*}} (892)^{0} \rightarrow \text{K}^{-} \pi^{+}. \end{split}$$

These results are preliminary.

BaBar Preliminary

- Precise measurements of singly Cabibbo-suppressed branching ratios: $D^+ \rightarrow \pi^+ \pi^0$ and $D^0 \rightarrow \pi^- \pi^+ \pi^0$, $K^- K^+ \pi^0$.
- First measurement of doubly Cabibbo-suppressed branching ratio : $D^+ \rightarrow K^+ \pi^0$.
- Amplitude analysis of $D^0 \rightarrow K^-K^+\pi^0$: measure $\delta_D \& r_D$ for the charge-conjugate dominant decays.
- Amplitude analysis $D_s^+ \rightarrow K^+ K^- \pi^+$: measure precise branching ratios of $D_s^+ \rightarrow \phi \pi^+$ and $D_s^+ \rightarrow \overline{K^{*0}(892)}K^+$ with $\phi \rightarrow K^+ K^-$ and $\overline{K^*(892)^0} \rightarrow K^- \pi^+$.

$D^+ \rightarrow \pi^+ \pi^0$, $K^+ \pi^0$

Event Reconstruction

- π⁰ reconstruction: have two of them, one from D^{*+}, other from D⁺:
 - • π^0 from D^{*+} is soft , 150 < p_{π^0} < 450 MeV/c

• π^0 from D⁺ has higher mom., $p_{\pi^0} > 200$ MeV/c

- D⁺→h⁺π⁰ reconstruction: 1.7 < m(h⁺π⁰) < 2.0 GeV/c², -0.9 < cos θ_h < 0.8 (0.7 in case of K⁺π⁰).
- K⁻, π⁺ and π⁺ tracks are fit to a vertex to reconstruct D⁺ candidate for reference mode.
- $P_{CM}(D^*) > 2.9 \text{ GeV/c}, |m_{D^*} m_{D^+}| < 155 \text{ MeV/c}^2$
- In case of multiple candidates in an event, select the one with higher D* momentum.

 $D^0 \rightarrow \pi^- \pi^+ \pi^0$, K⁻K⁺ π^0

$D^0 \rightarrow h^+ h^+ \pi^0$ Reconstruction

- h⁻ and h⁺ tracks are fit to a vertex
- Mass of π⁰ candidate is constrained to m_{π0} at h⁻h⁺ vertex
 P_{CM}(D⁰) > 2.77 GeV/c

Background Sources

- Charged track combinatoric
- > Mis-reconstructed π^0
- \succ Real D⁰, fake π_s
- Kππ⁰ reflection in πππ⁰ and KKπ⁰ modes

D* Reconstruction

> D^{*+} candidate is made by fitting the D⁰ and the π_s^+ to a vertex constrained in x and y to the measured beam-spot for the run.

Vertex χ^2 probability > 0.01

> Choose a single best candidate with smallest χ^2 for the whole decay chain (multiplicity = 1.03).

K⁻K⁺ π^0 branching ratio: CLEO result

FIG. 10. The invariant mass distribution of $K^+K^-\pi^0$ after doing the normalized mass difference sideband subtraction. In fitting, we exclude the region between 1.92 and 2.02 GeV/ c^2 due to an excess of misidentified $D^0 \to K^-\pi^+\pi^0$ events which survive the veto.

Phys. Rev. D54, 4211 (1996) B(D⁰→KKπ⁰)/ B(D⁰→KKπ⁰) = 0.95 ± 0.26 %

- High pion-to-kaon misidentification rate \Rightarrow contamination from D⁰→K⁻ $\pi^+\pi^0$ events very high.
 - Had to apply variousvetoes and thecorresponding efficiencycorrections.
 - Combinatorial background not fully understood.

A new cross-check done by the CLEO collaboration shows $B(D^0 \rightarrow KK\pi^0)/B(D^0 \rightarrow K\pi\pi^0) = 2.21 \pm 0.14$ (stat) %, which is consistent with our measurement.

Phys. Rev. D74, 031108 (2006)

LASS K π S-wave Parameterization

 $K\pi$ S-wave amplitude is described by the coherent sum of an effective range term and the $K_0^*(1430)$ resonance:

$$S(s) = (\sqrt{s/p}, \sin\Delta \cdot e^{i\Delta})$$

$$\Delta = \cot^{-1}[1/ap + rp/2] + \cot^{-1}[(m^{2}_{R}-s)/(m_{R}\Gamma_{R})]$$
Effective Range (NR) term
$$K^{*}_{0}(1430) \text{ resonance term}$$

a = scat. length, r = eff. range, m_R = mass of K^{*}₀(1430), Γ_R = width p = momentum of either daughter in the K π rest frame.

For K π scattering, S-wave is elastic up to K η ' threshold (1.45 GeV).

$K\pi$ S-wave from $D^0 \rightarrow K^-\pi^+\pi^+$ DP

[E791 Collaboration, slide from Brian Meadow's Moriond 2005 talk] Divide $m^2(K^-\pi^+)$ into slices

Find s-wave amplitude in each slice (two parameters)

• Use remainder of Dalitz plot as an interferometer

Moments Analysis in K⁻K⁺ channel

Excellent agreement between data & model.

Each event was weighted by the spherical harmonic $Y_{L}^{0}(\cos \theta_{H})$ (L=0,1,2).

For S- and P- waves in absence of cross-feeds from other channels:

٢

$$\begin{cases} \sqrt{4\pi} \langle Y_0^0 \rangle = S^2 + P^2 \\ \sqrt{4\pi} \langle Y_1^0 \rangle = 2|S||P|\cos\phi_{SP} \\ \sqrt{4\pi} \langle Y_2^0 \rangle = \frac{2}{\sqrt{5}}P^2 \end{cases}$$

With cross-feeds or in the presence of D-waves, higher moments ≠ 0.
 Wrong fit models tend to give rise to higher moments in the φ region, creating disagreement with data.

DPF 06, Honolulu, October 31, 2006

 $D_{s}^{+} \rightarrow K^{+}K^{-}\pi^{+}$

Data Sample = 240 fb⁻¹ 12000 $m = 1969.0 \pm 0.1$ $\pm 2\sigma$ sig. MeV/c² region: σ = 5.8 MeV/c² **≈ 100850** events. BABAR purity prelim. ≈ 95 % 2000 0 1.95 2.05 1.9 2 $m(K^+K^-\pi^+)(GeV/c^2)$ Events used to obtain Bkg shape: $(-10\sigma, -6\sigma)$ and $(6\sigma, 10\sigma)$.

• Signal events reconstructed from two kaon and a pion charged tracks fitted to a common vertex, with $\chi^2 > 0.1$ %.

■ Background from $D^{*+} \rightarrow D^{0}[K^{+}K^{-}] \pi^{+}$ removed by requiring m(K⁺K⁻)<1.85 GeV/c².

• Removed $K^-\pi^+_{mis}\pi^+$ reflection by requiring m($K^-\pi^+_{mis}\pi^+$) - m($K^-\pi^+_{mis}$) > 0.15 GeV/c².

Average event reconstruction efficiency ~ 30 %.