Leptonic and semileptonic D decays at BaBar

Justine SERRANO

Laboratoire de l'Accelerateur Linéaire

On behalf of the BaBar collaboration

DPF 2006, Hawaii

Introduction

Charm leptonic and semileptonic decays provide an important way to test lattice QCD predictions. Techniques validated in the charm sector can then be used in the B sector to improve the accuracy on CKM parameters determination.

Charm study at Babar

Large data sample available at Babar (typically 0.5M evts with BR=1%, ϵ =10%)

The analysis reported here are using just a fraction of the sample : 230 fb⁻¹ and 75 fb⁻¹

\bigoplus fragmentation (D, D_s, Λ_c ,...)

main challenge : background control

October 31 2006

Lep. & semilep. D decay at Babar

CC

$D_{s} \rightarrow \mu \overline{\nu}$

 \Rightarrow Precise knowledge of f_{Bd} and f_{Bs} needed to improve constraints from ΔM_d and $\Delta M_d / \Delta M_s$

In LQCD similar techniques are used to measure b and c decay constant \Rightarrow experimental measurements of f_{Ds} and f_D can be used as a test of lattice QCD

 \Rightarrow Partial width of M⁺ \rightarrow l⁺v :

$$\Delta M_d = \frac{0.5}{ps} \left(\frac{f_{B_d}}{200 MeV} \right)^2 \left(\frac{V_{td}}{8.8 \times 10^{-3}} \right)$$

space

Helicity Suppression

CKM Mixing

 $D_s^+ \rightarrow \mu^+ \nu$ is most accessible experimentally :

 $\Gamma(D_s^+ \rightarrow \tau^+ \nu_{\tau}) : \Gamma(D_s^+ \rightarrow \mu^+ \nu_{\mu}) : \Gamma(D_s^+ \rightarrow e^+ \nu_e) = 10 : 1 : 10^{-5}$

Lep. & semilep. D decay at Babar

uncertainties

$D_s^+ \rightarrow \mu^+ \nu$

Analysis overview

- Goal: Identify $D_s^* \rightarrow D_s \gamma$, $D_s \rightarrow \mu \nu_{\mu}$ decays in cc events
- Identify cc events: Charm -Tagging
 - Reconstruct charm mesons D⁰, D⁺, D_s⁺, and D^{*+} using hadronic decay modes – the 'tag'
 - High tag momentum above the kinematic limit from B decays
- Search for $D_s^{*+} \rightarrow \gamma D_s^{+} \rightarrow \gamma \mu^+ \nu$ in recoil
- Advantages:
 - tag momentum reduces uds, BB, ττ backgrounds
 - tag direction improves fit to missing neutrino and the ΔM resolution
 - knowledge of tag's charm reduces pion→muon misidentification by 50%
- Disadvantage
 - Loss in efficiency due to tagging

230.2 fb⁻¹

Lep. & semilep. D decay at Babar

$D_s^+ \rightarrow \mu^+ \nu$

Signal selection

- Signal is a peak in $\Delta M = M_{Ds^*} M_{Ds}$
- Tagging removes bb, uds, and ττ background, left with signal and cc background
- Identify kinematic quantities which distinguish signal

Entries/0.01GeV Intries/0.03GeV 0.2 0.4 0.4 0.5 -0.6 -0.4 -0.2 0.1 0.20.3 0.6 0 0.6 E*, (GeV) pcorr (GeV/c) Photon energy $p_{corr} = |p_{miss}| - |p_v|$

More cuts with E_{miss} , angle (μ , D_{s}^{+}), θ_{v}

Cut optimization maximising the significance

ττ uds

signal Data

- Fake charm tag from uds, bb, ττ, cc → 42 %
 ⇒ Subtracted using the tag sidebands
- Correct tag but μ from charm semi leptonic decay or τ ($\tau \rightarrow \mu v_{\mu} v_{\tau}$) $\rightarrow 26 \%$ \Rightarrow Use electron : same decays appear with an e while there is no $D_s^+ \rightarrow e^+ v$

 \Rightarrow Take into account differences between μ and e (phase space, Bremsstrahlung, e from conversion)

- Leptonic background $cc \rightarrow D_{(s)}^{*} \rightarrow D_{(s)}\pi^{0}, D_{(s)} \rightarrow \mu\nu_{\mu}$ $cc \rightarrow D_{(s)} \rightarrow \mu\nu_{\mu}$
 - Combinatoric

October 31 2006

$D_s^{\ *}\!\rightarrow\mu^{\!+}\!\nu$

Signal yield

230.2 fb⁻¹

- Yield extraction :
 - > bin-by-bin subtraction μ tag sideband from μ tag signal region
 - ➤ same for electrons
 - subtract electron from muon
 - > Binned χ^2 fit
- Normalize to $D_s^+ \rightarrow \phi \pi$:

We obtain :

$$\frac{\Gamma(D_s^+ \to \mu^+ \nu_{\mu})}{\Gamma(D_s^+ \to \phi\pi)} = 0.143 \pm 0.018 \pm 0.006$$

Independent measurement in BaBar : $B(D_s^+ \rightarrow \phi \pi) = (4.71 \pm 0.46)\%$ PRD 71, 091104

(2005)

Charm semileptonic decays

October 31 2006

Lep. & semilep. D decay at Babar

D→Kev

$$rac{d\Gamma}{dq^2} = rac{G_f^2 |m{V_{m{q_1}m{q_2}}}|^2 p_{P'}^3}{24\pi^3} |f_+(m{q}^2)|^2$$

The measured ff can be compared with different theoretical models and test LQCD determination of the parameter involved :

• Simple pole mass : suppose that the decay is governed by the spectroscopic pole. The measured parameter is the "effective pole mass" m_{pole}.

$$\left| f_{+}(q^{2}) \right| = rac{f_{+}(0)}{1 - rac{q^{2}}{m_{pole}^{2}}}$$

 Modified pole mass (B&K): add an effective pole to take into account higher resonances. Measure α_{pole} .

$$\left| f_{+}(q^{2}) \right| = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{m_{D_{s}}^{2}} \right) \left(1 - \frac{\alpha_{pole} q^{2}}{m_{D_{s}}^{2}} \right)}$$

Spectroscopic mass / pole, mD_s^* for Kev (1⁻ cs̄ state) • Untagged analysis

• Reconstruct the decay channel $D^{*+} \rightarrow D^0 \pi^+, \quad D^0 \rightarrow K^- \ell^+ \gamma$

in e⁺e⁻→cc continuum events

- Determine $q^2 = (p_D p_K)^2 = (p_\ell + p_v)^2 \leftarrow two constrained fits (m_{D0'}m_{D^*})^2$
- Reduce the background \leftarrow Fisher analyses (bb and cc events).
- Extract the form factor <- Unfolding: SVD method

 $D^0 \rightarrow K^-e^+\nu$

$D^0 \rightarrow K^- e^+ v$

Event reconstruction

Define two hemispheres:

• take soft π^+ , **K**⁻ and ℓ^+ in the same hemisphere

Cuts $\begin{cases} \bullet p_{\ell}^{*}, p_{\ell} > 0.5 \text{ GeV} \\ \bullet p_{\pi^{+}}^{*} < 0.4 \text{ GeV} \\ \bullet \cos \theta_{\text{thrust}} < 0.6 \end{cases}$

Y(4S) rest frame : *jet-like* events

- Compute D direction (- $p_{all particles \neq K, \ell}$)
- Compute the missing energy in the *l* hemisphere
- Fit $p_D = p_K + p_\ell + p_\nu$

From $p_{K'}, p_{\ell'}$, computed E_{miss} and D^0 direction

• Constraints using m_D and m_{D^*} (1c or 2c fit)

Compute
$$q^2 = (p_D - p_K)^2$$

 $D^0 \rightarrow K^- e^+ v$

Background rejection

Opposite

hemi.

2 Fisher variables :

• cc background: Spectator system variables

(mass, angular distribution, momentum and angular distribution of the leading particle + kinematic variables: p_D , $p_{\ell'}$, $cos \vartheta_{W\ell}$)

Lep. & semilep. D decay at Babar

leading

Background rejection

October 31 2006

 $D^0 \rightarrow K^- e^+ v$

Lep. & semilep. D decay at Babar

16

Decay characteristics

 \bigstar Efficiency vs q²

 \bigstar Reconstructed q² distribution

 $D^0 \rightarrow K^- e^+ v$

We use two control samples:

• $D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K^- \pi^+$

Same criteria and selection cuts as for the semileptonic channel (apart for the lepton)

- control of the Fisher bb and cc variables against background
- control of missing energy and p_D resolution used in the constrained fit

Control samples

•
$$\mathbf{D^{*+} \rightarrow D^0 \pi^+}, \ \mathbf{D^0 \rightarrow K^- \pi^+ \pi^0} \ (\pi^0 \rightarrow \gamma \gamma)$$

Same criteria and selection cuts as for the semileptonic channel + cut around the D⁰ mass.

Treat the π^+ as the e⁺ (m_e \rightarrow m_{π}) and the π^0 as the ν (m_{ν} \rightarrow m_{π}) to control :

 $D^0 \rightarrow K^- e^+ v$

Results

experiment	stat	m _{pole} (GeV/c²)	α _{pole}	
CLEO-c	281 pb ⁻¹	$1.98 \pm 0.03 \pm 0.02$	$0.19 {\pm} 0.05 {\pm} 0.03$	preliminary
FOCUS	13k evts	$1.93 \pm 0.05 \pm 0.03$	$0.28 \pm 0.08 \pm 0.07$	hep-ex/0410037
Belle	282 fb⁻¹	$1.82 \pm 0.04 \pm 0.03$	$0.52 \pm 0.08 \pm 0.06$	hep-ex/0604049
BaBar	75 fb⁻¹	$1.854 \pm 0.016 \pm 0.020$	$0.43 \pm 0.03 \pm 0.04$	preliminary

Pole mass below m_{D*s} (=2.112 GeV)

▶ α measurement in agreement with lattice QCD: $\alpha = 0.50 \pm 0.04$ hep-ph/0408306

► Disagreement between values from BaBar and CLEO-c ⇒ has to be clarified !

milep. D decay at Babar

$D_s \rightarrow \phi ev$

Analysis overview

 $D_s^+ \rightarrow \phi e^+ v$

$$D_s^+ \rightarrow \phi e^+ v$$

Decay characteristics

October 31 2006

Lep. & semilep. D decay at Babar

 $D_s^+ \rightarrow \phi e^+ \nu$

Kinematic variables

Efficiencies (including all cuts of the analysis but SL filter) : $\sim 15\%$

October 31 2006

Lep. & semilep. D decay at Babar

Control sample I

Use $\mathsf{D}_s\!\!\rightarrow\!\!\phi\pi$ to check :

 $D_s^+ \rightarrow \phi e^+ v$

- the agreement data/MC for the variables used in the Fisher analysis
- D_s direction and missing energy determination

Event selection :

- Similar selection as $\phi l\nu$ as possible
- Background subtraction using the sidebands

$$D_s^+ \rightarrow \phi e^+ v$$

Control sample II

Fisher variables :

Large disagreement data/MC observed in the fragmentation distribution

Control sample III

D_s direction determined using all the other tracks in the event is compared to its real value :

 $D_s^+ \rightarrow \phi e^+ \nu$

$D_s^+ \rightarrow \phi e^+ v$

Fitting procedure

Use 5 equal bins for each reconstructed variable and perform a log-likelihood minimisation :

 n_i^{MC} results from :

• the number of bkg events estimated from generic MC (normalized to data lumi). We take the average over $\cos\theta_v$ and χ (flat distribution).

• the number of signal events expected is deduced by applying a weight **W** to MC signal events generated according to phase space.

$$n_i^{MC} = N_S \frac{\sum_{j=1}^{n_i^{signal}} w_j(\lambda_k)}{W_{tot}(\lambda_k)} + n_i^{bckg.}$$

The fitting procedure has been checked on toy simulations

October 31 2006

$$D_s^+ \rightarrow \phi e^+ v$$

Results

★ Form factor ratios at q²=0 (fixing $m_A = 2.5 \text{GeV/c}^2$ and $m_V = 2.1 \text{GeV/c}^2$):

Lep. & semilep. D decay at Babar

Conclusion and perspectives

BaBar has obtained a precise measurement of the charm leptonic decay $D_s^+ \rightarrow \mu^+ v$

> D_s decay constant : $f_{D_s} = 283 \pm 17$ stat ± 7 syst $\pm 14_{D_s \to \phi \pi}$ MeV

we are still far from what can be achieved on lattice (% accuracy)

$$R = \frac{\Phi_s(m_b)/\Phi_d(m_b)}{\Phi_s(m_c)/\Phi_d(m_c)}$$

 \succ determination of f_{Bs}/f_{Bd} using double ratio :

$$\frac{\Phi_s(m_b)}{\Phi_d(m_b)} = \frac{\sqrt{m_{Bs}}f_{Bs}}{\sqrt{m_{Bd}}f_{Bd}}$$

R can be determined very precisely on the lattice thanks to the cancellation of chiral logs : R = 1.01(3) (from Becirevic et al, Phys. Rev. D 60 (1999) 074501)

with

So if f_{Ds}/f_D is measured very precisely $\rightarrow f_{Bs}/f_{Bd}$ could be known at % level

We can improve experimental results with more statistics and a better determination of $B(D_s^+ \rightarrow \phi \pi)$

Conclusion and perspectives

Semileptonic decays :

ightarrow D \rightarrow Kev form factor : First study of the Babar potential in charm sl decays

Very successful, same precision as lattice reached

 $m_{pole} = 1.854 \pm 0.016 \pm 0.020 \text{ GeV/c}^2$ $\alpha_{pole} = 0.43 \pm 0.03 \pm 0.04$

preliminary

Open a large perspective in ff measurements in BaBar ...

 \succ D_s \rightarrow ϕ ev form factors :

$$r_2 = 0.705 \pm 0.056 \pm 0.029$$

 $r_2 = 1.636 \pm 0.067 \pm 0.038$

preliminary

Still a lot of interesting measurement that we can do :

- ff in $D \rightarrow \pi Iv$ and $D \rightarrow K \pi Iv$
- More detailed study of ff in $D_s \rightarrow Xev$
- Comparison between different channels
- Charm baryons,....