Standard Model Higgs Limits at DØ

Wade Fisher

Fermi National Accelerator Laboratory

On behalf of the DØ Higgs Physics Group

November 1st 2006

Probing EW Symmetry Breaking

- \times SU(2)_L×U(1)_v is well tested in collider experiments
 - But it is not a symmetry of our vacuum otherwise quarks, leptons, and gauge bosons would all be massless

$$L_{Higgs} = \left| \left(\partial_{\mu} - ig W^{\alpha}_{\mu} T^{\alpha} - \frac{i}{2} k B_{\mu} \right) \phi \right|^{2} - \mu^{2} \phi^{\dagger} \phi + \lambda \left(\phi^{\dagger} \phi \right)^{2}$$

- * Transverse polarizations of W^{+/-} and Z take three of the four dof, remaining one becomes a fundamental scalar H
- **×** This is not the only possibility!
 - ✗ SUSY Higgs, General 2HDM
 - X Little Higgs, Technicolor

Experimental Constraints

Direct searches at LEP2: mH>114.4 GeV @ 95% CL Precision EW fits: mH<166 GeV @ 95% CL mH<199 GeV with LEPII Limit

November 1st 2006

Previous Tevatron Studies

- ★ Higgs Sensitivity Group (6/2003)
- Based on fully simulated detectors
 - MC-based, but data used for QCD estimation
 - X No systematics included

- SUSY-Higgs Working Group (10/2000)
- **x** Based on parameterized
- simulation of an *average* FNAL detector
 - X Systematics "estimated"

SM Higgs Production and Decay

- \times H \rightarrow bb is dominant for low mass
 - ✗ Hard to see in gg→H, but associated W/Z provides "tag"
- ✗ Above mH=135 GeV, H→WW is the largest rate

- Production dominated by gluon fusion and associated production
 - **×** 0.8-0.2 pb for gg→H
 - ★ 0.2-0.03 pb for WH

November 1st 2006

Search Channels

- X Defined by production/decay signatures
 - × H→bb separated into one & two b-Tag samples (ST & DT)
- × pp \rightarrow WH \rightarrow l ν bb (associated production)

X	WH→evbb (ST+DT)	371 pb ⁻¹
X	WH $\rightarrow \mu \nu bb$ (ST+DT)	385 pb^{-1}
X	WH→∦vbb (ST+DT)	261 pb ⁻¹
X	WH→WWW	363-384 pb ⁻¹

× pp \rightarrow ZH \rightarrow llbb (associated production)

★ $ZH \rightarrow vvbb$ (ST+DT)	261 pb^{-1}
× ZH→eebb (DT)	389 pb^{-1}
× ZH \rightarrow µµbb (DT)	320 pb^{-1}

- × pp→H→WW (gluon fusion)
 - × H→WW→ee + $e\mu$ + $\mu\mu$

930-950 pb⁻¹

Search Channels

- * Final variable determines ultimate signal/background separation
 - × H→bb uses dijet invariant mass. W/Z+jets is largest background
 - ★ H→WW uses $\Delta \Phi$ between leptons. Diboson production is largest background
- Next step is to combine the FV distributions of all channels to evaluate a combined limit

Statistical Treatment

- DØ has chosen to use the CLs approach, which is a semi-Frequentist statistical treatment
 - X The test statistic (or estimator) used is the Poisson likelihood ratio between the signal+background and background-only hypotheses

$$Q(\vec{s}, \vec{b}, \vec{d}) = \prod_{i=0}^{N_c} \prod_{j=0}^{N_{bins}} \frac{(s+b)_{ij}^{d_{ij}} e^{(s+b)_{ij}}}{d_{ij}!} \frac{b_{ij}^{d_{ij}} e^{b_{ij}}}{d_{ij}!}$$

* The Log Likelihood Ratio (LLR) is used to ensure a distribution monotonic in an increasing number of observed events.

$$\Gamma = -2\ln(Q) = -2\sum_{i=0}^{N_c} \sum_{j=0}^{N_{bins}} (s_{ij} - d_{ij}\ln(1 + \frac{s_{ij}}{b_{ij}}))$$

The CL_s Approach

- Vising our statistical estimator (LLR), the Poisson-distributed outcomes of many repeated experiments are used to populate a PDF for each hypothesis.
 - We can then define a confidence level for each hypothesis (signal+bkgd or bkgd-only):

$$CL_{n} = \int_{\Gamma_{obs}}^{\infty} \frac{\partial P_{n}}{\partial \Gamma} d\Gamma$$

- **x** By construction: $CL_s \equiv CL_{s+b} / CL_b$
 - ★ The signal+background hypothesis is considered to be excluded at a confidence level of X when 1-CLs ≤ X% (e.g., X=95%)
 - X This formulation provides for an estimate of the "goodness" of the background prediction

November 1st 2006

CLs in Pictures

- × Black dashed line: Observed
 LLR value (LLR_{obs})
- X Green: Bkgd-only hypothesis
 - X CL_b is region to right of LLR_{obs}
 - × Equals ~50% for goodbkgd/data agreement
- Ked: Signal+bkgd hypothesis
 - x CL_{s+b} is region to right of

LLR

Systematic Uncertainties

- Systematics are folded into the signal and background outcomes of the Poisson MC trials via Gaussian distribution.
 - **×** Essentially broadens each PDF according to the size of the uncertainty
 - X Correlations are carried through amongst bkgds and between signal and bkgd
- Average size of total uncertainty
 - ★ 10-20% for signals, 10-25% for backgrounds

Source	Relative Size (%)
Luminosity	6.5
b-Tagging (per jet)	5.0 - 12.0
JES	2.0-7.0
Lepton ID (per lepton)	2.0-7.0
Background Xsec	5.0 - 20.0

Combined Results

Bottom right: LLR
 distributions for ZH (llbb
 and vvbb) channels
 combined

X <u>Top left:</u> LLR distributions for WH (evbb, μvbb, & missing lepton) channels combined

Combined Results

Bottom right: LLR distributions for all search channels

combined

× Top left: LLR distributions for H→WW (ee, eµ, & µµ) channels combined

November 1st 2006

DØ SM Higgs Limits

x We present limits in terms of R = 95% CL limit / $\sigma_{_{\rm SM}}$

Getting our Bearings

And we still need to
 "double" our luminosity
 by combining with
 CDF...

We're at ~300 pb⁻¹ at low mass...and 1 fb⁻¹ at high mass
Cannot compare directly

Adding CDF's Results

16

- **×** At the time of this combination, CDF added:
 - × WH \rightarrow lvbb / ZH \rightarrow vvbb / ZH \rightarrow llbb at 1fb⁻¹
 - ★ H→WW (ee, $e\mu$, & $\mu\mu$) at 360 pb⁻¹
 - X Systematics very similar in size, most treated as uncorrelated between DØ and CDF

DPF/JPS 2006

November 1st 2006

Combined Tevatron SM Higgs Limits

x \mathbf{R}_{obs} : 10.4 at m_{H} =115 & 3.8 at m_{H} =160 **x** \mathbf{R}_{exp} : 7.6 at m_{H} =115 & 5.0 at m_{H} =160 November 1st 2006

Another Map Check

 With asymmetric inputs, (0.3-1.0 fb⁻¹), we can extrapolate limits to 1fb⁻¹:

$$\begin{array}{rl} R_{exp}: & 6.0 \text{ at } m_{H} = 115 \\ & \& & 4.0 \text{ at } m_{H} = 160 \end{array}$$

* The HSG result indicates we should be able to exclude (R=1) at mH=115 with 1.5-2.0 fb⁻¹

An Emerging Path...

- X Though we're not quite there, we're missing pieces
 - Advanced analysis selections (NN,ME) provide factor of ~1.7 in equivalent luminosity
 - × New channels (taus, H→ZZ) in the pipeline
 - X Many systematics currently statistics limited

	Equiv Lumi	Xsec Factor	Xsec Factor
Ingredient (DØ)	<u>Gain @ 115</u>	<u>MH=115 GeV</u>	<u>MH = 160 GeV</u>
Today with 1fb ⁻¹	-	6.0	4.0
Lumi = 2 fb ⁻¹	2	4.2	2.8
NN b-Tagging	3	2.4	2.8
NN Analyses	1.7	1.9	2.1
Improved mass resolution	1.5	1.5	2.1
New Channels	1.3	1.3	1.8
Reduced systematics	1.2	1.2	1.7
	→At	: 115 GeV	At 160 GeV
	nee	d ~2.7 fb ⁻¹	need ~5.5 fb ⁻
ovember 1 st 2006	DPF/JPS 200)6	

Final Comments

- X Current DØ SM Higgs analyses are very encouraging
 - ✗ Increasing dataset → improving background description
 → more advanced analyses
- X First combination with CDF was very successful
 - **×** We each learned a few things
 - **×** Trying hard to keep up with aggressive predictions
- As pieces of the Tevatron Higgs search fall into place, we're getting closer to new knowledge of the Standard Model
 - New results are just on the horizon, expect updated DØ and Tevatron combinations soon