Evidence of Z-> bb at DØ

STNY

IIVERSITY OF NEW YORK

Huishi Dong State Univ. of NY at Stony Brook On behave of DØ Experiment Oct. 30, 2006

• Z->bb is important

- Understanding the background of many physics processes, eg. H—>bb...
- Determine the B jet energy scale, benefit the top quark mass measurement...
- + Understanding B-tag, b jet trigger...
- It's difficult to measure
 - + No un-prescaled di-jet trigger
 - + Background determination is tricky:
 - * S:B ~ 1:30 after all cuts
 - * Mass peak in turn-on region

- Data taken from July 2002 to April 2004(p14)
 - + "Bad" event removal
 - One "loose" offline reconstructed muon, p_T>4
 GeV/c, matched to a jet within ΔR(r, φ) < 0.7
 to enchance the signal content.
 - + 90M events, $\int L \approx 300 \text{ pb}^{-1}$
- MC
 - + 82k PYTHIA generated Z->bb
 - Pass through full simulation, p14 RECO software, corrected for b-tag.jet ID data/MC efficiencies

Event Selection

- Cuts on the data set
 - + Only 2 "good" jets, both $|\eta| < 2.5$ and $p_T > 20$ GeV/c
 - + Both jets are taggable for the b-tagging
 - + Primary vertex have >= 4 tracks within ±35cm in z
 - The 2 jets are "loosely" secondary vertex btagged(SVT)
 - + $\Delta \phi$ > 2.5 between the 2 jets
- Main backgrounds
 - Mistag of the light flavor jets (B₁), QCD bb production
 (B₂). Before b-tag, Signal S<<B₂<<B₁.
- After single b-tag, B₂/B₁~0.1. After double b-tag, B₁~10% of whole sample, but still S:(S+B)~1:30
 H. Dong, 30-Oct-06

- B₁ and B₂ can not be simulated accurately enough in the quantities required.
- Derive the background from the data using single/non-tagged events
 - Measure the Tag Rate Function (TRF) per jet btag probability, for single/non btagged events
 - + Apply the TRF to the single/non btagged events
 - Due to the different b-tag rates of S/B₁/B₂, the di-jet invariant mass distributions of SVT tagged and TRF tagged events will show differences
 - + The S peak can be derived from these differences

A Toy Model—Single Tag

 Assume S/B₁/B₂ have inv. di-jet mass distribution before/ after the single b-tag cut:

Apply TRF to non B-tagged events

H. Dong, 30-Oct-06

SVT-TRF single B-tagged events

Assume $S/B_1/B_2$ have inv. di-jet mass distribution before/ aft<u>er the second b-tag</u> cut: After direct SVT Single B-tag After direct SVT Double B-tag S $B_1 = 10^4$ $B_1 = 10^2$ S $B_2 = 10^3$ $B_2 = 10^2$ \mathbf{B}_1 B_1 \mathbf{B}_2 $B_2 | S = 10^1$ $S = 10^{0}$ The per jet TRF measured in data is $TRF = \frac{10^2 + 10^2 + 10^0}{10^4 + 10^3 + 10^1}$ Apply the TRF back to 1-btagged events, uncorrected signal: Δs $B_1 = TRF * 10^4 = 183$ $\Delta B_1 = -83$ ΔB_2 $B_2 = TRF * 10^3 = 18$ $\Delta B_2 = 82 \approx -\Delta B_1$ S \mathbf{B}_1 $S = TRF * 10^{1} = 0$ $\Delta S = 10 \approx S$ B_2 ΔB_1 Apply TRF to Single B-tagged events SVT-TRF single B-tagged events

H. Dong, 30-Oct-06

DPF'06 Meeting, Hawaii

- B₁ is always out when looking at the differences between direct tag and TRF tag
- "0-1" correction is due to the different tag rate and invariant mass distribution of B₁ and B_{2.} The effect of S is relatively small
- The uncorrected signal has the nearly un-altered
 S peak and scaled down "0-1" correction
- The S peak is the uncorrected signal subtraced by properly normalized "0-1" correction
- 9.2 in our model, compared to 10

- Rid of the signal effect on TRF's, "0-1" corrections in both single and double tagged SVT/TRF differences:
- Using iteration technique:
 - + Get the signal peak in double tagged event, scale it by 6.5 (from MC) to get the single tagged signal
 - Get fraction (f) of signal in each di-jet invariant mass bin, re-weight events in each bin by (1-f)
 - + rederive the TRF, apply it to re-weighted events
 - + Get the new signal peak and repeat the procedures
 - This correction to "0-1" correction is done in the same way

H. Dong, 30-Oct-06

The TRF's are measured as a function of jet
 E_T in 3 η region and applied to single/non
 tagged events as event weights

 $B_1/B_2/S$ in Real Life

Comparison of direct SVT single tagged vs.
 TRF single tagged events

H. Dong, 30-Oct-06

DPF'06 Meeting, Hawaii

"0-1" correction is clearly different from the Z peak. And the effect of S is small.

- MC expect Z peak position 83.3 GeV, width 13.0 GeV
- After the "0-1" correction and signal contamination correction, data and MC agree reasonably well

Systematic Uncertainties

Signal Efficiency	Relative Error	Signal Size	Relative Error	Signal Position	Relative Error
Trigger Efficiency	~20%	Sianal		"0-1 <i>"</i>	5%
# of Jets	7%	Contamination Correction	10%	Correction	
Jet Energy Scale(JES)	+8% -6%	"0-1"	+10%	Total	5%
B-tag	12%			Uncertainty of signal width is dominated by statistical error.	
Total	25%	Total	13%		

 Z—>bb signal in ~300 pb⁻¹ of data is observed over the QCD background to be

1168±217(stat.)±150(sys.), ~4.4σ

- The position 81.0±2.2 GeV and width 10.7±2.1 GeV are in agreement with MC position 83.3 GeV and 13.0 GeV respectively
- The observed number of events after selecting a specific trigger (651±174) agrees with the expected number of events from MC (754±151)
- With the new Silicon Track Trigger (STT) and trigger term for Z—>bb and increased luminosity, several times more data has been collected, expecting improved uncertainties and hope for precise measurement.
 H. Dong, 30-Oct-06
 DPF'06 Meeting, Hawaii

 Thanks go to Andrew Haas of Columbia University and Per Jonsson, Amber Jenkins and Gavin Davies of Imperial College London for their work and discussion with me.