Search for the Higgs Boson in $H o WW^* o l^+ u l^- u$ at $\mathrm{D} { \emptyset }$

Yuan Hu

State University of New York @ Stony Brook

on Behalf of $\mathbf{D} \ensuremath{\mathcal{O}}$ Collaboration

DPF 2006, 10/31/06, Honolulu, Hawaii

- * Motivation
- * Method
- * Results
- * Summary

Where is the Higgs

$\Delta \chi^2$ of the EW observables global fit

- * Higgs is the only Standard Model (SM) particle not discovered yet;
- Mass not predicted, but constrained by (in)direct searches;
- * $m_{\rm H}$ > 114.4 GeV at 95% CL placed by LEP2 direct search;
- * $m_{\rm H}$ < 166 GeV at 95% CL placed by global fit to ElectroWeak (EW) observables, with preferred mass $m_{\rm H} = 85 + 39 - 28$ GeV at 68% CL;
- * Tevatron currently is the unique place for the direct Higgs search.

DPF 2006, 10/31/06, Yuan Hu

Search for the Higgs Boson in $H o WW^* o l^+
u l^-
u$

- * Tevatron is a $p\bar{p}$ collider, with $\sqrt{s} = 1.96$ TeV;
- * Main production mechanism: gluon fusion: $gg \rightarrow H$ (0.8 - 0.2 pb); and W/Z associated production: WH and ZH (0.2 - 0.03 pb);
- * Higgs Decays:
 - $m_{\rm H} < 135$ GeV, predominantly to bb, due to the overwhelmed QCD BKGD, the $gg \rightarrow$ $H \rightarrow b\bar{b}$ is not favored, the more promising processes are the W/Z associated production which trigged by high $p_{\rm T}$ leptons from W/Z;
 - $m_{\rm H} > 135$ GeV, to WW^* becomes dominant, especially the leptonic decays of the W-pair provide the most clean signal;
- * the $H \rightarrow WW^* \rightarrow l\nu l'\nu$ ($l = e, \mu$, including those from τ decay) is the most favorite channel for the exploring of the "heavy" SM Higgs.

4

DPF 2006, 10/31/06, Yuan Hu

Search for the Higgs Boson in $H o WW^* o l^+
u l^-
u$

also for the simple extension of SM. e.g. the 4th generation

angular correlation between Ws (therefore between leptons) since they come from spin 0 Higgs;

Signature:

- * two isolated High p_{T} leptons, with the preference of pointing to the same direction;
- * large missing transverse moment ($E_{\rm T}$).

DPF 2006, 10/31/06, Yuan Hu 5 Search for the Higgs Boson in $H \to WW^* \to l^+ \nu l^- \nu$

- * Data was collected at DØ between April 2002 and February 2006, corresponding to ${\cal L} \sim 1 f b^{-1}$
- * Three separated analyses were performed using different skimmed dataset, aimed at the three different final states of WW^* leptonic decay;
 - $H \to WW^* \to e^+ \nu e^- \nu$, corresponding $\mathcal{L} \sim 950 pb^{-1}$
 - $H \to WW^* \to \mu^+ \nu \mu^- \nu$, corresponding $\mathcal{L} \sim 930 pb^{-1}$
 - $H \to WW^* \to e^{\pm} \nu \mu^{\mp} \nu$, corresponding $\mathcal{L} \sim 950 pb^{-1}$
- * Marjor Background

* Signal ($m_{\rm H} = 120, 140, 160, 180, 200 \text{ GeV}$) and most SM BKGD processes (WW, W+jets/ γ , WZ, ZZ, Drell-Yan, tt) generated with Pythia, QCD BKGD estimated from data.

DPF 2006, 10/31/06, Yuan Hu 7

1. Preselection: online trigger, lepton ID, two high p_{T} leptons with opposite charges;

- 2. Cut on missing transverse energy $\not\!\!E_{\rm T}$ to remove the QCD and Drell-Yan events;
- 3. Cut on the significance of missing transverse energy;

DPF 2006, 10/31/06, Yuan Hu 8 Search for the Higgs Boson in $H \to WW^* \to l^+ \nu l^- \nu$

Invariant Mass of di-lepton

4. Cut on the di-lepton invariant mass to remove the BKGD with Z;

9

DPF 2006, 10/31/06, Yuan Hu

- 5. Cut on the sum of the leptons transverse momentum and missing transverse energy $(p_{\rm T}^l + p_{\rm T}^{l'} + \not \!\!\! E_{\rm T});$
- 6. Cut on the min. transverse mass between each lepton and missing transverse energy (Min. $m_{\rm T}(p_{\rm T}^l, \not\!\!\! E_{\rm T})$);

7. Cut on the Scalar sum of jets transverse energy to remove $t\bar{t}$ events;

Search for the Higgs Boson in $H o WW^* o l^+
u l^-
u$

Event Selection (IV)

 $\Delta \phi(l, l')$ after preselection

$\mu^+ \nu \mu^- \nu$ Channel Angle (µµ) at Preselection DØ Run II Preliminary $L = 930 \text{ pb}^{-1}$

DPF 2006, 10/31/06, Yuan Hu

8. Cut on the di-lepton opening angle $(\Delta \phi(l, l'))$.

 $\Delta \phi(l, l')$ will also be used as the final discriminant variable to combine with other DØ search channels to evaluate the Higgs mass limit.

Search for the Higgs Boson in $H \to WW^* \to l^+ \nu l^- \nu$

All BKGD ww W+jet/ γ 10.3 ± 0.6 7.0 ± 0.2 1.4 ± 0.6 16.4 ± 0.1 24.4 ± 1.5 5.3 ± 1.5

DØ Run II Preliminary, ~950 pb⁻¹

4th Generation Model

160

Standard Model

 1.0 ± 0.4

95% CL Limit

····· Expected

180

Higgs mass (GeV)

200

Observed

 6.6 ± 0.1

H-WW -tvtv

- Observed data is well consistent with expected SM BKGD;
 - are combined to evaluate the Higgs production X section (σ) \times Branching ratio $BR(H \rightarrow WW^*)$ limits using the MCLIMIT method:

QCD

 0.06 ± 0.02

 0.1 ± 0.05

 0.6 ± 0.6

- * Shadow region has been excluded at 95% CL:
- * not sensitive enough to exclude SM Higgs, a factor of 4 away;
- * $m_{\rm H}$ between 150 to 185 GeV has been excluded for the 4th generation model.

WZ/ZZ

 0.8 ± 0.1

 0.6 ± 0.1

 0.5 ± 0.1

 $H \rightarrow WW^*$

0.415

0.97

0.35

 $e^{-}e^{+}$

 $e^{\pm}\mu^{\mp}$

 $\mu^{-}\mu^{+}$

o×BR(H→WW^(-')) (pb)

101

Data

10

18

9

Excluded at LEP

100

 9.8 ± 0.8

120

140

Observed/Expected number of candidate events for $m_{\rm H} = 160$ GeV ($L \sim 950$ pb⁻¹)

 Z/γ^*

 0.0 ± 0.0

 0.6 ± 0.4

 0.02 ± 0.01

 $\tau^{-}\tau^{+}$

 1.1 ± 0.1

 2.1 ± 0.1

 0.5 ± 0.1

- * Searches for the Higgs boson via $H \to WW^* \to l^+ \nu l^- \nu$ have been performed in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, with DØ detector at Tevatron;
- * Three channels with different WW^* leptonic decay modes were studied using data collected from April 2002 to February 2006, corresponding to the \mathcal{L} of the order of 1 fb^{-1} ;
- * The number of observed events is consistent with what is expected from the SM background;
- * Limits on the Higgs production cross section times the branching ratio $\sigma \times BR(H \rightarrow WW^*)$ have been set, Higgs mass between 150 to 185 GeV has been excluded for the 4th generation model;
- * DØ is continuously accumulating data, analysis sensitivity is keeping optimization, more exciting results are expected.