Observation of Exclusive Hadronic Processes at 10.6 GeV: e⁺e⁻→ρ⁰ρ⁰,φρ⁰,γη,γη['],φη

Kai Yi, SLAC for the BaBar Collaboration

DPF Meeting, Hawai'i, Oct 31, 2006

Kai Yi, BaBar/SLAC

10/31/2006

Outline

- Introduction
- First Observation of positive C parity hadronic final states in the reactions $e^+e^- \rightarrow \rho^0 \rho^0, \phi \rho^0$
- Observation of $e^+e^- \rightarrow \gamma \eta, \gamma \eta'$ (C=-1) and the time-like transition form factor at 10.6 GeV
- Observation of $e^+e^- \rightarrow \phi \eta$ (C=-1 final state)
- Summary and Outlook

Introduction—possible processes at B factories

One photon related process

Two photon interaction processes

A test ground for QCD

Two-Virtual-Photon-Annihilation, TVPA; new observation at BaBar

Today's topic Kai Yi, BaBar/SLAC

Introduction

- B factories are desired to study the following process: $e^+e^- \rightarrow \gamma^* \rightarrow Y(4S) \rightarrow B^-B$
- The high integrated luminosity at B factories also provides a new window on other e⁺e⁻ physics :
 - I. Two-virtual-photon-annihilation (TVPA) yielding hadronic final states --Different from well-known TP
 - --Speculated to be significant but not observed for double charmonium production
 - --First time observation
 - II. one photon to exclusive hadronic final states
 - -- e⁺e⁻→hadronic states are studied everywhere, exclusive is special cross section very small @10.6 GeV, test s dependence
 - III. Interference between these processes
- Very large integrated luminosity at interesting s values!
 ~205 fb⁻¹ @10.58 GeV (OnPeak), 20 fb⁻¹ @10.54 GeV (OffPeak) Can explore new opportunities; much more to be analyzed!

- --4 well-reconstructed charged tracks $(K^+K^-\pi^+\pi/\pi^+\pi^-\pi^+\pi)$
- --identified kaons or pions
- --Vertex Constraint $p(\chi^2)>0.1\%$
- -- p_K >800 MeV/c, p_{π} >600 MeV/c to reduce QED background

Select events of invariant mass of 4 track system (K+K- π + π -/ π + π - π + π -) within 170 MeV of c.m. energy.

PRL 97, 112002 (2006)

Scatter plots of : m_{KK} vs $m_{\pi\pi}$ (KK $\pi\pi$) $m_{(\pi\pi)f}$ vs $m_{(\pi\pi)b}$ ($\pi\pi\pi\pi$)

Only one entry in the $\pi^+\pi^-\pi^+\pi^$ scatter plot out of two possible combinations (no ambiguity)

Use binned log-likelihood fit over 9 tiles to extract signal

Mass projections for selected events

Clean ϕ and ρ^0 signals

Relativistic Breit-Wigner lineshapes used in the fit

The extracted signals:

	On+(OffPeak	OnPeak Yield	OffPeak Yield	OffPeak expected (continuum)
	Yield	significance			
ρρ	1243±43	>> 5 <i>0</i>	1138± 42	104± 14	112 <i>±</i> 4
φρ	147±13	>> 5 <i>o</i>	135± 13	14± 4	13± 1
				consiste	ent

Y(4S) production does not contribute because of C parity violation. The yields are consistent with continuum production Signals large enough that can investigate the angular distributions

10/31/2006

Kai Yi, BaBar/SLAC

These are the first observations of $e^+e^- \rightarrow C=+1$ exclusive hadronic final states Arguments to support TVPA production:

- C parity
- Consistency of the yield between OnPeak and OffPeak
- Observed angular distributions

Define 1.008< m_{ϕ} <1.035 GeV and 0.5< m_{ρ} <1.1 GeV (reduce uncertainty); the cross sections for these mass regions and $|\cos\theta^*|$ <0.8 are: $\sigma(\rho\rho)=20.7\pm0.7(\text{stat})\pm2.7(\text{syst})$ fb 21.4 $\pm0.7/17.7\pm0.6$ fb (Theory) $\sigma(\phi\rho)=5.7\pm0.5(\text{stat})\pm0.8(\text{syst})$ fb 6.0 $\pm0.1/$ 5.6 ±0.2 fb (Theory) [note: $\sigma(e^+e^- \rightarrow hadrons at Ecm=10 \text{ GeV}) \sim 3 \text{ nb}]$

The corresponding contribution to muon g-2 from TVPA is small; this removes a possible uncertainty source in the g-2 calculation

 $e^+e^- \rightarrow \eta\gamma, e^+e^- \rightarrow \eta'\gamma$

• The cross section of $e^+e^- \rightarrow \gamma^* \rightarrow P\gamma$ ($P = \eta$ or η'):

$$\sigma(e^+e^- \to P\gamma) = \frac{2}{3}\pi^2\alpha^3 \left|F_P(q^2)\right|^2$$

transition form factor

 $F_P(q^2)$ can be calculated using pQCD:

$$-q^{2}F_{P}(q^{2}) = \sqrt{2}f_{P}\left(1 - \frac{5}{3}\frac{\alpha_{s}(q^{2})}{\pi}\right) \text{ for } q^{2} >> 1 \text{ GeV}^{2}$$

effective decay constant

- Measurement of form factors at high q² is needed to test phenomenological models.
 - Previous measurements from $\gamma^* \gamma^* \rightarrow \eta^{(\prime)}$ measure up to $q^2 \approx 20 \text{ GeV}^2$.
 - We measure the transition form factor at $q^2 = 112 \text{ GeV}^2$, i.e. much closer to the asymptotic region.

 $e^+e^- \rightarrow \eta\gamma, e^+e^- \rightarrow \eta'\gamma$

Very rare but clean two-body final states:

 $e^+e^- \rightarrow \eta\gamma, e^+e^- \rightarrow \eta'\gamma$

q ² =112 GeV ²	BaBar Data	Predictions
$q^2 F(\eta')$	0.251 ± 0.019 ±0.008	0.25 – 0.34
$q^2 F(\eta)$	0.229 ± 0.030 ±0.008	0.11 – 0.22
Ratio (η′/η)	1.10 ± 0.17	1.56 – 2.27

The Transition Form Factors BaBar ∆ CLEO Theoretical predictions

Observation of e⁺e⁻→φη **at ~10.6 GeV**

To be submitted to PRD

- $e^+e^- \rightarrow \phi \eta$ is analogous to $e^+e^- \rightarrow J/\psi \eta_c$ in the s quark sector need relativistic treatment, η --not pure s-sbar pair
- Provide information on s-dependence by combining with a CLEO measurement at lower energy

Basic requirements (similar to $\phi \rho$: --2 well-reconstructed tracks -- at least 2 good photons (E_{γ} >500 MeV) --identified kaons --Vertex constraint, $p(\chi^2) > 0.001$ -- m_{KK} <1.1 GeV/c², 0.4< $m_{\gamma\gamma}$ <0.6 GeV/c² --Invariant mass of 4 particle (K+K⁻ $\gamma\gamma$) within 230 MeV of c.m. energy.

Observation of e⁺e⁻→φη **at ~10.6 GeV**

We see $\phi\eta$ correlation. Define 1.008< m_{ϕ} <1.035 GeV/ c^{2}

use a two-dimensional log-likelihood fit to extract signals *P*-wave relativistic Breit-Wigner for ϕ Gaussian resolution function for η

fix the mass and width of the ϕ and the mass of the η to PDG 2004 values fix the r.m.s value of the η Gaussian to the MC resolution value (13.6 MeV/c²).

10/31/2006

Kai Yi, BaBar/SLAC

Observation of e⁺e⁻ $\rightarrow \phi \eta$ at ~10.6 GeV

Mass projections

Yield in the defined mass window: On+Off: 24±5 On: 20±5 Off: 3±2

Significance: 6.5 σ

U.L. for Y(4S) decay @90% CL based on -10 ± 21 events: 2.5X10⁻⁶

Observation of e⁺e⁻ $\rightarrow \phi \eta$ at ~10.6 GeV

The full angular distribution, assuming one-photon production, is given by:

 $\frac{dN}{d\cos\theta^* d\cos\theta_{\phi} d\varphi_{\phi}} \propto \sin^2\theta_{\phi} (1+\cos^2\theta^* + \cos 2\varphi_{\phi} \sin^2\theta^*)$

Projections:

$$\frac{dN}{d\cos\theta^*} \propto (1+\cos^2\theta^*)$$
$$\frac{dN}{d\cos\theta_{\phi}} \propto \sin^2\theta_{\phi}$$
$$\frac{dN}{d\varphi_{\phi}} \propto (2+\cos 2\varphi_{\phi})$$

 θ^* : polar angle in c.m.

 θ_{ϕ} : ϕ helicity angle

 φ_{ϕ} : azimuthal angle of the decay plane ϕ w.r.t. production plane normal in the c.m. frame

Distributions in data are consistent with predictions with limited statistics

We re-weight MC angular distributions as above for efficiency estimation.

Observation of e⁺e⁻→φη **at ~10.6 GeV**

Define $1.008 < m_{\phi} < 1.035 \text{ GeV/c}^2$ and $0.5 < m_{\rho} < 1.1 \text{ GeV/c}^2$. After radiative corrections, the restricted cross section ($|\cos\theta^*| < 0.8$) are measured as: $\sigma(\phi\eta)=2.1\pm0.4(\text{stat})\pm0.1(\text{syst}) \text{ fb}$ Extend to ($|\cos\theta^*| <=1.0$ by assuming $1 + \cos^2\theta^*$ distribution: $\sigma(\phi\eta)=2.9\pm0.5(\text{stat})\pm0.1(\text{syst}) \text{ fb}$

Combine with CLEO measurement at lower energy; 1/s³ energy dependence favored over 1/s⁴, assuming continuum production

A direct comparison with theoretical calculation is interesting. Another puzzle?

Analysis in Initial State Radiation data is ongoing, will provide more information on the s dependence

Kai Yi, BaBar/SLAC

Summary and Outlook

At BaBar we have:

- Made the first observations of the TVPA hadronic processes: $e^+e^- \rightarrow \rho^0 \rho^0$ and $e^+e^- \rightarrow \phi \rho^0$
- Measured the η and η' transition form factors at high q^2 (~112 GeV²)
- Observed the process $e^+e^- \rightarrow \phi \eta$ and measured the cross section; this provides an interesting test of QCD prediction of the energy dependence, assuming continuum production.

We plan to use the high integrated luminosity at BaBar to investigate other interesting low-multiplicity exclusive final states in the near future!

Backup plots

10/31/2006

Nine Tile likelihood fit Method

A binned likelihood fit based on nine-tiles is designed to extract signal yield in order to handle possible nonlinear background in $e^+e^- \rightarrow \phi\rho^0$ and $e^+e^- \rightarrow \rho^0\rho^0$ which is described in Chapter 7. The likelihood of obtaining the events observed in each tile n_i is given by

$$L = \prod_{i} \epsilon_i^{-m_i} \frac{m_i^{n_i}}{n_i!} \tag{2}$$

where m_i is the number of events expected for a given choice of the parameters, and n_i is the number seen. For purposes of fitting it is convenient to take the log and drop terms that do not depend on the parameters through the m_i 's. This yields

$$lnL = \sum \left(-m_t + n_t lnm_t\right) \tag{3}$$

The parameters are the number of signal events S, the number of ϕ -only background events B_{ϕ} , the number of ρ -only background events B_{ρ} and B the number of events with neither a ϕ nor ρ .

By combining Monte Catlo, mass projection fit, and other assumptions, we can specify the fraction of events of each type that contribute to each tile $-f_i^X$. Thus the contributions to each tile are given by

$$m_{i} = f_{i}^{S}S + f_{i}^{\phi}B_{\phi} + f_{i}^{\rho}B_{\rho} + f_{i}B$$
(4)

where the subscript (or lack thereof) indicates the component.

N ₁	N ₂	N ₃
N ₄	N ₅	N_6
N ₇	N ₈	N ₉

f_i^S—from Monte Carlo f_i^ρ,f_i^φ—from mass projection fit f_i^B—float slopes assuming linear Kai Yi, BaBar/SLAC

10/31/2006

Radiative Corrections

Assuming ϕ and η decaying branching ratios to be 1 and ignoring other correction factors first, the visible cross section and the Born cross section have the following relation due to the radiation of soft photons³:

$$\sigma_{visible} = \frac{N_{abserve}}{L} = \int_0^{x_{max}} \sigma_B(s(1-x)) * \epsilon(x) * W(s,x) dx \tag{12}$$

where $N_{abserve}$ is the number of observed signal events, \mathcal{L} is the integrated luminosity, $s = 10.58^2$ GeV², $x = E_{\gamma}/(\sqrt{s}/2)$ is the normalized radiated photon energy, $\epsilon(x)$ is the detection efficiency for certain x, W(s, x) (See Appendix B) is the QED radiator function [20], and $\sigma_B(s(1-x))$ is the Born cross section at $q^2 = s(1-x)$. Assuming σ_B has a $1/s^n$ dependence, then $\sigma_B(s(1-x)) = \sigma_B(s)(\frac{s}{s(1-x)})^n = \sigma_B(s) * \frac{1}{(1-x)^n}$ which has a $1/s^n$ dependence, equation 12 can be rewritten as:

$$\sigma_{visible} = \sigma_B(s) * \epsilon(x = 0) * (1 + \delta)$$
(13)

where δ is the radiative correction, and

$$(1+\delta) = \int_0^{x_{max}} \left(\frac{1}{1-x}\right)^n * \frac{\epsilon(x)}{\epsilon(x=0)} * W(s,x)dx \tag{14}$$

The $\epsilon(x)$ is obtained from MC simulation, and the angular distributions are re-weighted by equa-

10/31/2006

Kai Yi, BaBar/SLAC