Initial State Radiation Physics at BaBar

David Muller
SLAC
Representing the BaBar Collaboration

• ISR and BaBar

• Energy Dependence, Structure of
 • $e^+e^- \rightarrow p\bar{p}$
 • $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
 • $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$
 • $e^+e^- \rightarrow K^+K^-\pi^+\pi^-$, $K^+K^-\pi^0\pi^0$
 • $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$, $\pi^+\pi^-\pi^+\pi^-\pi^0\pi^0$
 • $e^+e^- \rightarrow K^+K^-K^+K^-$, $K^+K^-\pi^+\pi^-\pi^+\pi^-$
 • $e^+e^- \rightarrow J/\psi\pi^+\pi^-$, $J/\psi\gamma\gamma$, $D\bar{D}$
 • $e^+e^- \rightarrow \psi(2S)\pi^+\pi^-$

proton form factors
ω spectroscopy
contribution to $g_\mu - 2$
structure in $\phi f_0(980)$
resonance in $\omega\eta$
1st measurements
structure at 4260 MeV
structure at 4320 MeV

• Summary
Initial State Radiation in e^+e^- Annihilations

- The radiator function W is known to <1%

- Measure $\sigma(e^+e^- \to X)$ as a fcn. of $m_{\gamma^*} = m_X = E_{CM} = \sqrt{s'}$

- Features:
 - access to wide s' range
 - very small point-to-point systematic errors
 - γ_{ISR} detected \leftrightarrow hadron system contained
 - measure all the way down to threshold

- Disadvantages:
 - mass resolution $>$ beam-E spread
 - requires very high luminosity

$e^+e^- \to \gamma_{ISR}e^+e^- \to \gamma_{ISR}\gamma^* \to \gamma_{ISR}X$

X is any allowed hadronic system, e.g. a resonance with $J^{PC} = 1^{--}$

Cross section:

$$\frac{d\sigma(s,s',\theta_\gamma)}{ds'd\cos\theta_\gamma} = W(s,s',\theta_\gamma) \cdot \sigma(s')$$

γ_{ISR} detected \leftrightarrow hadron system contained
$e^+e^- \rightarrow \text{hadrons}$ Cross Section:

- Has been measured over a rather broad range

- Recent, precise measurements from KLOE, VEPP-II, BES, LEP

- Perturbative QCD works at high E_{CM}; lots of structure at lower E_{CM}

- Regions around 2, 4 GeV especially interesting

- Theoretical $g_\mu-2$, $\alpha(M_Z)$ need integral, better data for $E_{\text{CM}}<10$ GeV
What do we measure?

- First, pick a specific final state X and isolate it.
- Then measure the cross section, $\sigma(m)$
 → ...and $R_X = \sigma_X(m)/\sigma_{\mu\mu}(m)$
 → spectroscopy, BF of 1^{--} states
 → discover new 1^{--} states
 → extract form factors if $X=h\bar{h}$
 → tests of QCD in m-dependence
 $\leftrightarrow g_\mu-2$, $\alpha(m_Z)$
 see K.Yi’s talk to follow

- Then study the resonant substructure
 → some quantum #s through correlations, angular distributions
 → extract cross sections, form factors for “exclusive” submodes
 → discover new resonances

- Then more general substructure
 → general features might expose interesting dynamics
 → at what E_{CM} do the events become “jetty”
 →
The ISR program at BaBar:

- Measure exclusive final states up to ~4.5 GeV, inclusive to ~7 GeV

- Published: \(\mu^+\mu^- \), \(pp \), \(\pi^+\pi^-\pi^0 \), \(\pi^+\pi^-\pi^+\pi^- \), \(K^+K^-\pi^+\pi^- \), \(K^+K^-K^+K^- \), \(\pi^+\pi^-\pi^+\pi^-\pi^+\pi^- \), \(\pi^+\pi^-\pi^+\pi^-\pi^0\pi^0 \), \(K^+K^-\pi^+\pi^-\pi^+\pi^- \), \(J/\psi\pi^+\pi^- \)

- Today: these plus \(K^+K^-\pi^0\pi^0 \), \(f_0(980) \), \(J/\psi\gamma\gamma \), \(D\bar{D} \), \(\psi(2S)\pi^+\pi^- \)

- In progress: \(\pi^+\pi^- \), \(K^+K^- \), \(K^+K^-\pi^0 \), \(K^+K^0\pi^- \), \(K^0K^-\pi^+ \), \(\pi^+\pi^-\pi^0\pi^0 \), \(\pi^+\pi^-\pi^+\pi^-\pi^0 \), \(\psiK^+K^- \), \(\Lambda\bar{\Lambda} \), inclusive, ...
The BaBar Experiment

- \(e^+e^-\) collisions, \(\sim 10.6\) GeV
- Different beam energies:
 \(- E_{e^-} = 9.0\) GeV
 \(- E_{e^+} = 3.1\) GeV
 \(- \) c.m.-lab boost, \(\gamma\beta=0.55\)
- Asymmetric detector
 \(-\) c.m. frame acceptance
 \(- 0.9 \sim \cos\theta^* \sim 0.85\)
 \(- \text{wrt } e^- \text{ beam}\)
 \(-\) detects \(\sim 15\%\) of ISR \(\gamma\)
 \(-\) contains \(\sim 50\%\) of evts with fwd/bwd \(\gamma_{\text{ISR}}\)
- with excellent performance
 \(-\) Good tracking, mass resolution
 \(-\) Good \(\gamma, \pi^0\) recon.
 \(-\) Full \(e,\mu,\pi,K,p\) ID
- High luminosity:
 \(-\) \(\sim 390\) fb\(^{-1}\) accumulated
 \(-\) \(89\)–\(298\) fb\(^{-1}\) used here
 \(-\) \(0.3\)–\(1.1\) billion \(e^+e^- \rightarrow q\bar{q}\) evts.
 \(-\) \(3\)–\(10\) million \(e^+e^- \rightarrow \gamma_{\text{ISR}}J/\psi\)
 \(-\) \(2\)–\(7\) million \(e^+e^- \rightarrow \gamma_{\text{ISR}}\rho^0\)
The equivalent ISR Luminosity:

- Can be calculated from the measured luminosity or derived for our γ_{ISR} acceptance using $e^+e^-\rightarrow\gamma_{\text{ISR}}\mu^+\mu^-$ events.

- In each 100 MeV window near 1 GeV, we expect to accumulate ~ 8 pb$^{-1}$
- In the 3 GeV region, ~ 26

- This mode also gives a nice constraint on the J/ψ width:
 - 89 fb$^{-1}$, PDG B_{ee}, $B_{\mu\mu}\rightarrow\Gamma_{J/\psi} = 93.7\pm3.5$ keV;
 - with CLEO 96.1 ± 3.2 keV, dominate world avg.
\[\text{e}^+\text{e}^- \rightarrow \text{pp} \]\[\quad 240 \text{ fb}^{-1} \quad \text{PRD 73, 012005 (06)} \]

- **Selection:**
 - events with exactly two tracks, ID’d as p and \(\bar{p} \), and a hard \(\gamma \)
 - kinematic fits, imposing 4-momentum conservation
 - select events with good \(\chi^2_{pp\gamma} \)

- **Evaluate and subtract backgrounds from**
 - \(\pi^+\pi^-\gamma \), \(K^+K^-\gamma \), using: measured cross sections, events with ID’d \(\pi, K \), and \(\chi^2_{KK\gamma}, \chi^2_{\pi\pi\gamma}, \ldots \)
 - \(\text{e}^+\text{e}^- \rightarrow \text{pp}\pi^0 \) from MC normalized to \(\pi^0 \) peak in data (\(~6\%)\)

![Graphs showing distributions for pp\gamma, K\bar{K}\gamma, J/\psi, and \(\psi(2S) \) events.](image-url)
• calculate the cross section
 → threshold to 4.5 GeV in one experiment
 → 5→10% systematic, not shown
 → consistent with previous results
 → easier to see structure
 → ...e.g. sharp drops at 2.25, 3 GeV

• described in terms of electric, magnetic form factors
 \[\sigma(s) \propto |G_M(s)|^2 + 2m_p^2 |G_E(s)|^2 / s \]
 → full coverage allows separation via production angle distribution
 → \(G_E > G_M \) at low \(E_{CM} \)
 → but consistent at high \(E_{CM} \)
 → inconsistent with PS170
• define the effective form factor, F

 $\sigma(s) \propto (1 + 2m_p^2/s) |F|^2$

→ compare with $pp \rightarrow e^+e^-$
→ consistent with pQCD at high s
→ steep rise near threshold
→ ...similar to features seen in B, J/ψ decays; all need to be understood
\[e^+e^- \rightarrow \pi^+\pi^-\pi^0 \]

89 fb\(^{-1} \)
PRD 70, 072004 (04)

- **Selection:**
 - events with exactly two tracks, a hard \(\gamma \), at least 2 more \(\gamma \)
 - kinematic fits, including \(\pi^0 \) mass constraint

- **Cross section**

 \[M_{3\pi} \text{ (GeV/c}^2) \]

 \[\text{Events / (4 MeV/c}^2) \]

 \[\text{Cross section (nb)} \]

 → dominated by resonances: \(\omega, \phi, J/\psi \), ...plus excited \(\omega \)?

 → consistent with previous, precise data in \(\omega/\phi \) region

 → inconsistent with DM2 data at 1.35–2 GeV
• fit to cross section with ϕ, ω, ω', ω'' resonances

→ “best” measurements of ω', ω''
→ ...though relative phases must be assumed

<table>
<thead>
<tr>
<th></th>
<th>Mass (MeV/c2)</th>
<th>Γ (MeV)</th>
<th>$B_{ee \times B_{3\pi}} \times 10^{-6}$</th>
<th>$\phi - \phi_\omega$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>782</td>
<td>8.7</td>
<td>67.0 ±2.8</td>
<td>–</td>
</tr>
<tr>
<td>ϕ</td>
<td>1019</td>
<td>4.3</td>
<td>43.0 ±2.2</td>
<td>163°</td>
</tr>
<tr>
<td>ω'</td>
<td>1350±28</td>
<td>450±98</td>
<td>0.82±0.08</td>
<td>180°</td>
</tr>
<tr>
<td>ω''</td>
<td>1660±10</td>
<td>230±36</td>
<td>1.30±0.14</td>
<td>0°</td>
</tr>
</tbody>
</table>

fixed to world average values
fitted
fixed to assumed values
\(e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^- \)

- Selection: \(\rightarrow \) four good tracks, a hard \(\gamma \), kinematic fits

- Cross section
 \(\rightarrow \) threshold \(\rightarrow 4.5 \text{ GeV} \) in one experiment
 \(\rightarrow \) interesting structure
 \(\rightarrow \) this represents \(\sim \)half the total hadronic \(\sigma \) at 1.5 GeV
 \(\rightarrow \) 5\% systematic over most of range improves the error on \(g_\mu^{-2} \)

- Substructure
 \(\rightarrow \) main peak mostly \(a_1(1260)\pi \)
 \(\rightarrow f_0(1370)\rho^0 \) seen, could \(\leftrightarrow \) structure at \(\sim 2 \text{ GeV} \)
 \(\Rightarrow \) with more data, can study substructure in \(E_{\text{CM}} \) bins
Comparison with previous results:

- near threshold
 - consistent with prev. results
 - the best measurement for $E_{CM} < 0.75$ GeV, 12% relative systematic error

- main peak
 - the best/first measurement for $E_{CM} > 1.4 / 2$ GeV
 - a study of the $\pi^+\pi^-\pi^0\pi^0$ final state is in progress
\[e^+e^- \rightarrow K^+K^-\pi^+\pi^- \text{, } K^+K^-\pi^0\pi^0 \]

- Cross sections

\[\sigma(K^+K^-\pi^\mp) \text{ (nb)} \]

- huge improvement for \(K^+K^-\pi^+\pi^- \), first for \(K^+K^-\pi^0\pi^0 \)
- rich substructure dominated by \(K^*(892)K\pi \), with substantial \(K_1(1270)^+K^- \), \(K_1(1400)^+K^- \), \(\phi\pi^+\pi^- \), \(\rho^0K^+K^- \), and more
- several hints of structure, e.g. at \(\sim 2 \text{ GeV} \leftrightarrow \phi_0(980) \) threshold
- since \(\phi \), \(\phi_0(980) \) are both narrow, this submode can be studied...
• The $\phi f_0(980)$ submode:
 → visible in m_{KK} vs. $m_{\pi\pi}$ scatter plots
 → extract yield by fitting the m_{KK} distribution in each E_{CM} bin in a $m_{\pi\pi}$ slice around the f_0 mass

 → background from $\phi \pi \pi <10$
 → threshold behavior inconsistent with a typical, smooth function
• Convert to cross sections
 → behavior near threshold unchanged
 → \(\pi^+\pi^- \) and \(\pi^0\pi^0 \) modes give consistent results
 → can be described by adding a resonance; a fit yields:
 \[m = 2175 \pm 18 \text{ MeV}/c^2 \]
 \[\Gamma = 58 \pm 26 \text{ MeV} \]
 \[\phi = -36 \pm 56^\circ \]
 wrt non-res
 5.6\(\sigma \) significance
 → very interesting mass region, just below \(\Lambda\bar{\Lambda} \) threshold
 → is this a new state?
 → is it analogous to the \(Y(4260) \)?
 → need more data, other modes to understand structure in detail
Cross sections

- Large improvements in both measurements
- Dips at ~1950 MeV confirmed; also seen by FOCUS
- The 6-charged mode has very little substructure, ~1 η per event
- ...but the 4-charged mode has a rich substructure, including \(\omega\eta\), \(\omega\pi^+\pi^-\pi^0\), \(\eta\pi^+\pi^-\pi^0\) submodes, signals for \(\rho^\pm\), \(\rho^0\), \(f_0(980)\), ...
• The $2(\pi^+\pi^-)\pi^0\pi^0 : 3(\pi^+\pi^-)$ ratio
 → is flat and ...
 → =4 except where the $\omega\eta$ submode contributes
 → a challenge to understand
 → will keep studying, do a coupled-channel analysis

• The $\omega\eta$ submode
 → is easy to isolate, use sidebands to subtract background
 → the cross section is dominated by two resonances, J/ψ and something with
 $m = 1645 \pm 8$ MeV/c^2
 $\Gamma = 114 \pm 14$ MeV
 ⇒ is it the $\omega(1650)$? ($\Gamma=315$)
 ...or the $\phi(1680)$?
 ...or something new...?
• What is causing the dip at 1950 MeV?
→ we don’t know, so let’s fit a resonance

→ fitted parameter values for our two modes are consistent
→ combined:
 \[m = 1870 \pm 20 \text{ MeV/c}^2, \quad \Gamma = 150 \pm 20 \text{ MeV}, \quad \delta \phi = 9 \pm 15^\circ \]
→ the width is significantly larger than seen by FOCUS,
 \[m = 1910 \pm 10 \text{ MeV/c}^2, \quad \Gamma = 37 \pm 13 \text{ MeV} \]
$e^+e^- \rightarrow K^+K^-K^+K^-$

$e^+e^- \rightarrow K^+K^-\pi^+\pi^-\pi^+\pi^-$

- Cross sections

$\sigma(K^+K^-K^+K^-) (\text{nb})$

E_{CM} (GeV)

- First measurements
- The $K^+K^-K^+K^-$ mode has a strong ϕ, but no other substructure
- The $K^+K^-\pi^+\pi^-\pi^+\pi^-$ mode has a complex substructure with a strong $K^*(890)$, but a weak ϕ
$e^+e^- \rightarrow J/\psi \pi^+\pi^-$

233 fb$^{-1}$ PRL 95, 142001 (05)

• Selection:
 → ID’d e^+e^- or $\mu^+\mu^-$ pair, ID’d $\pi^+\pi^-$ pair, no more tracks
 → **NO**, hard γ required as J/ψ signal is fairly clean
 → use prominent $\psi(2S)$ signal to choose cuts, evaluate efficiency
 → also use missing mass, p_t to suppress bkgs

• Evaluate backgrounds from
 → all non-J/ψ sources using events with $m_{ee,\mu\mu}$ in J/ψ sidebands
 → $J/\psi X$ sources from missing mass, p_t (very small)
• E_{CM} distribution of selected events
 → is there non-resonant production? → inconclusive
 → do heavy ψ states decay this way? → inconclusive
 → are there new (charmonium) state(s) → yes! (maybe)

⇒ single resonance: $M \sim 4260$ MeV/c^2, $\Gamma \sim 90$ MeV
⇒ such a wide state above $D\bar{D}$ threshold shouldn’t decay to $J/\psi\pi\pi$
⇒ there is a dip in R at this energy...
⇒ is there is more than one state? What are they?
• Further studies of the Y(4260)
 → searches in B decays
 → ISR studies of J/ψγγ
 → inconclusive PRD 73, 011101 (06)
 → no signal hep-ex/0608004
 → ISR studies of D̅D
 → no signal hep-ex/0607083
 → all above ISR modes (e.g. φππ, pp)
 → no signal
 → several more studies in progress
$e^+e^- \rightarrow \psi(2S)\pi^+\pi^-$

298 fb$^{-1}$ hep-ex/0610057 submitted to PRL

- Selection:
 → Rec’d $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$ candidate, ID’d $\pi^+\pi^-$ pair, no more tracks, no π^0 or η candidates
 → **NO**, hard γ required as the $\psi(2S)$ signal is very clean
 → cuts on missing mass and p_t, lepton helicity angle

- Yield and cross section

→ interesting structure near threshold...
→ ...but it’s NOT the Y(4260) $M \sim 4325$ MeV/c2, $\Gamma \sim 170$ MeV
⇒ this is fun! And there’s more fun to come...
J/ψ and ψ(2S) Branching Fractions

- Observed in all/many of the above studies:
 \[\rightarrow \text{measure } BF(\psi \to f) \times \Gamma_{ee}, \text{ use PDG } \Gamma_{ee} \text{ to obtain} \]

<table>
<thead>
<tr>
<th>Mode</th>
<th>BaBar BF (%)</th>
<th>PDG 2004</th>
<th>Other since 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/ψ→pp</td>
<td>0.222±0.016</td>
<td>0.217±0.008</td>
<td></td>
</tr>
<tr>
<td>J/ψ→π⁺π⁻π⁰</td>
<td>2.18 ±0.19</td>
<td>1.50 ±0.20</td>
<td>2.09 ±0.12 BES</td>
</tr>
<tr>
<td>J/ψ→π⁺π⁻π⁺π⁻</td>
<td>0.361±0.037</td>
<td>0.40 ±0.10</td>
<td>0.353±0.031 BES</td>
</tr>
<tr>
<td>J/ψ→K⁺K⁻π⁺π⁻</td>
<td>0.609±0.073</td>
<td>0.720±0.230</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J/ψ→π⁺π⁻π⁺π⁻π⁺π⁻</td>
<td>0.440±0.041</td>
<td>0.40 ±0.20</td>
<td></td>
</tr>
<tr>
<td>J/ψ→π⁺π⁻π⁺π⁻π⁰π⁰</td>
<td>1.65 ±0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J/ψ→ωπ⁺π⁻π⁰</td>
<td>0.40 ±0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J/ψ→ψ(2S)→K⁺K⁻K⁺K⁻</td>
<td>0.67 ±0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J/ψ→ψ(2S)→π⁺π⁻π⁺π⁻π⁰π⁰</td>
<td>0.509±0.055</td>
<td>0.31 ±0.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J/ψ→ψ(2S)→φπ⁺π⁻</td>
<td>0.177±0.037</td>
<td>0.160±0.032</td>
<td></td>
</tr>
</tbody>
</table>

- useful
- competitive
- best
- dominant
Summary

• The very high luminosity of the B factories has (re)opened several interesting areas of elementary particle physics

• At BaBar we have exploited initial state radiation to
 → study e^+e^- annihilations at E_{CM} from threshold to ~ 5 GeV
 → improve our knowledge of R, $g_{\mu-2}$, $\alpha(M_Z)$
 → improve spectroscopy of ω states
 → study proton form factors, find $G_E > G_M$ at low E_{CM}
 → discover new states/structures at $m\sim 2175, 4260, 4400$ MeV
 → improve measurement of an ω/ϕ state at 1645 MeV

• In the future, many new, improved studies planned
 → update current results with full data set
 → additional exclusive modes under study or consideration
 → in particular, hope to reach 1% uncertainty on $e^+e^- \rightarrow \pi^+\pi^-$
 → inclusive measurements