A CP-odd Observable for LHC

G. Valencia* (with Yili Wang#)

New CP-odd observable in H ---> t anti-t. G. Valencia, Yili Wang., hep-ph/0512127.

Published in **Phys.Rev.D73:053009,2006**

*Iowa State University (<u>valencia@iastate.edu</u>)

#University of Oklahoma (<u>yili@theory1.nhn.ou.edu</u>)

CP Violation at LHC

- Find ``naive T"-odd (triple products), CP violating correlations that could be explored at LHC
 - suitable for high energy processes (i. e. jets)
 - want triple products that are really CP-odd
 - LHC initial state pp can be a problem
- · Construct it from final state variables
- Look for t t production with subsequent top decay t → b W

Parton CM asymmetry

- Construct CP-odd triple product : $\varepsilon(p_t, p_{\bar{t}}, p_b, p_{\bar{b}})$
- In parton CM: $t\bar{t}b\bar{b}X \xrightarrow{CP} t\bar{t}b\bar{b}X$

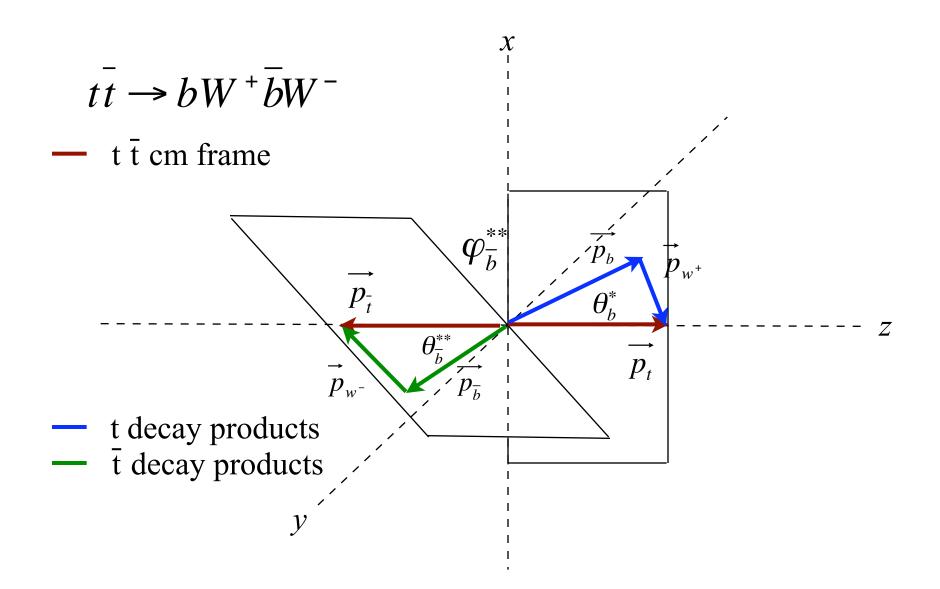
$$\sqrt{s} \overrightarrow{p_t} \cdot (\overrightarrow{p_b} \times \overrightarrow{p_{\overline{b}}}) \xrightarrow{CP} \sqrt{s} (-\overrightarrow{p_{\overline{t}}}) \cdot (-(\overrightarrow{p_{\overline{b}}}) \times -(\overrightarrow{p_b}))$$

$$= -\sqrt{s} \overrightarrow{p_t} \cdot (\overrightarrow{p_b} \times \overrightarrow{p_{\overline{b}}})$$

Can be studied with the counting asymmetry:

$$A_{CP} \equiv \frac{N_{events}(\vec{p}_{\bar{b}} \cdot (\vec{p}_{b} \times \vec{p}_{t}) > 0) - N_{events}(\vec{p}_{\bar{b}} \cdot (\vec{p}_{b} \times \vec{p}_{t}) < 0)}{N_{events}(\vec{p}_{\bar{b}} \cdot (\vec{p}_{b} \times \vec{p}_{t}) > 0) + N_{events}(\vec{p}_{\bar{b}} \cdot (\vec{p}_{b} \times \vec{p}_{t}) < 0)}$$

kinematics in parton cm frame



Example: H decay

- Start with simple example: CP nature of a Higgs (heavy enough to decay into top pairs)
- coupling: $-\frac{m_t}{v}H\bar{t}(A+iB\gamma_5)t_1$
- CP violation if both A, B non-zero at the same time (multi-Higgs models)
- Look for $H \to \bar{t}$ t decays with subsequent top decay $t \to b$ W
- $\Gamma \sim |A|^2 + |B|^2$ but $A_{CP} \sim A B$

One finds:

$$\Gamma(H \to t\bar{t}) = N_c \frac{M_H}{32\pi} \frac{g^2 m_t^2}{M_W^2} \sqrt{1 - \frac{4m_t^2}{M_H^2}} \left[(|A|^2 + |B|^2) \times \left(1 - \frac{2m_t^2}{M_H^2} \right) - 2(|A|^2 - |B|^2) \frac{m_t^2}{M_H^2} \right]. \tag{5}$$

$$A_{CP} \equiv \frac{\hat{\Gamma}}{\Gamma} = \frac{\pi}{4} \sqrt{1 - \frac{4m_t^2}{M_H^2}} \frac{AB}{|A|^2 + |B|^2} \frac{(1 - \frac{2M_W^2}{m_t^2})^2}{(1 + \frac{2M_W^2}{m_t^2})^2} \times \left(\frac{1}{1 - \frac{2m_t^2}{M_H^2} - 2\frac{|A|^2 - |B|^2}{|A|^2 + |B|^2} \frac{m_t^2}{M_H^2}}\right)$$
(12)

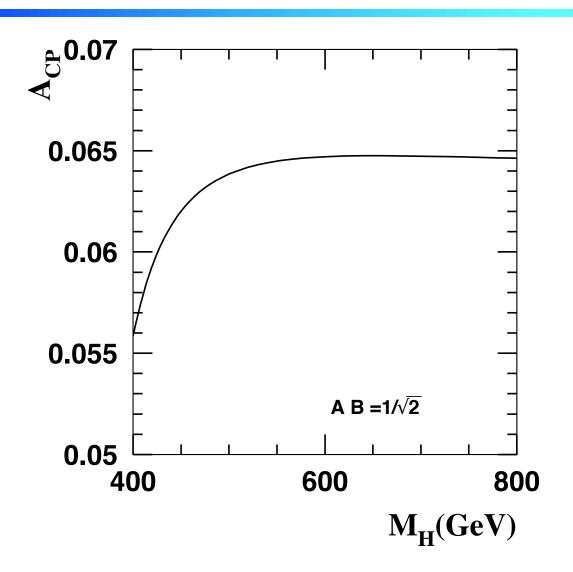
How large can it be?

- With some assumptions:
 - lightest neutral mass eigenstate dominate
 - different vevs have comparable sizes
- · Weinberg finds

$$|AB| \le \frac{1}{\sqrt{2}}$$

- and shows models where the upper bound is reached (Phys.Rev. D42 (1990) 860)
- this leads to an asymmetry as large as 6.5%

In H decay (H rest frame)



LHC?

- In calculating A_{CP} we didn't ``use the LHC"
- so $X \rightarrow X_{CP}$ didn't affect us
- treat the LHC as a "Higgs factory" and start with the H as initial state
- to what extent can we do the same for t t initial states? (under investigation)
- start by assuming we can:

Non-resonant t t production

- At the LHC the signal gets diluted by non-resonant t pair production (in our example for CP violation)
- Other sources of CP violation (e.g. top-quark color edm) affect other diagrams
- To complete our example we need other diagrams that produce color singlet top-quark pairs:

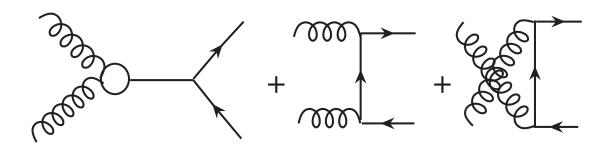


FIG. 3. Three diagrams responsible for *CP* asymmetry in top-quark pair production.

CP asymmetry in g g \rightarrow t \bar{t}

- Calculation is more complicated. We used helicity amplitudes for spin density matrix
- Narrow width approximation for t t̄

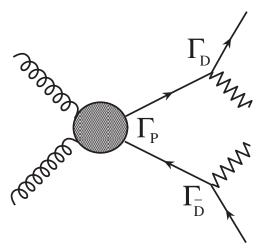


FIG. 4. Decomposition of $t\bar{t}$ production and decay vertices with helicity amplitudes.

Defining:
$$\bar{u}_{t\lambda}\Gamma_P v_{\bar{t}\sigma} \bar{v}_{\bar{t}\sigma'} \gamma^0 \Gamma_P^{\dagger} \gamma^0 u_{t\lambda'} \rightarrow \frac{1}{4} \sum_{\lambda_1,\lambda_2} \mathcal{M}_P(\lambda_1,\lambda_2,\lambda,\sigma) \times \mathcal{M}_P^*(\lambda_1,\lambda_2,\lambda',\sigma'),$$

and:
$$\mathcal{T}_{t}(\lambda',\lambda) \equiv \bar{u}_{t\lambda'} \not p_b (1-\gamma_5) u_{t\lambda}$$

$$\mathcal{T}_{\bar{t}}(\sigma,\sigma') \equiv \bar{v}_{\bar{t}\sigma} \not p_{\bar{b}} (1-\gamma_5) v_{\bar{t}\sigma'}.$$

We find:

$$|\mathcal{M}|^{2} = \frac{g^{4}}{64} \left(\frac{\pi}{M_{t}\Gamma_{t}}\right)^{2} \left(2 - \frac{m_{t}^{2}}{M_{W}^{2}}\right)^{2} \delta(p_{t}^{2} - m_{t}^{2}) \delta(p_{\bar{t}}^{2} - m_{t}^{2})$$

$$\times \sum_{\lambda_{1}, \lambda_{2}, \lambda, \lambda', \sigma, \sigma'} \mathcal{M}_{\mathcal{P}}(\lambda_{1}, \lambda_{2}, \lambda, \sigma) \mathcal{M}_{\mathcal{P}}^{*}(\lambda_{1}, \lambda_{2}, \lambda', \sigma')$$

$$\times \mathcal{T}_{t}(\lambda', \lambda) \mathcal{T}_{\bar{t}}(\sigma, \sigma'). \tag{25}$$

Production helicity amplitudes

TABLE I. t + u channel $gg \rightarrow t\bar{t}$ and $gg \rightarrow H \rightarrow t\bar{t}$ helicity amplitudes. The former should be multiplied by g_s^2 and the latter by $(gm_t/2M_W)$. Color factors have not been included and the kinematic factors refer to the t quark in the parton CM frame: $\tau_t = 4m_t^2/s, \ \beta = \sqrt{1-\tau_t}, \ \gamma = (1-\beta^2)^{-1/2}.$

$g, g \to t\bar{t}$	t + u channels	s-channel
+, + +, +	$\frac{2\sqrt{\tau_t}(1+\beta)}{\beta^2\cos^2\theta-1}$	$\frac{s^{3/2}}{2(s-M_H^2)}(F_b - iF_a)(B + iA\beta)$
+, +, -	$\frac{2\sqrt{\tau_t}(1-\beta)}{\beta^2\cos^2\theta-1}$	$\frac{s^{3/2}}{2(s-M_H^2)}(F_b - iF_a)(B - iA\beta)$
$-, - \rightarrow +, +$	$\frac{2\sqrt{\tau_t}(1-\beta)}{1-\beta^2\cos^2\theta}$	$-\frac{s^{3/2}}{2(s-M_H^2)}(F_b + iF_a)(B + iA\beta)$
-, - → -, -	$\frac{2\sqrt{\tau_t}(1+\beta)}{1-\beta^2\cos^2\theta}$	$-\frac{s^{3/2}}{2(s-M_H^2)}(F_b+iF_a)(B-iA\beta)$
$-,+ \rightarrow -,-$	$\frac{2\beta\sin^2\theta}{\gamma(1-\beta^2\cos^2\theta)}$	0
$-,+ \rightarrow -,+$	$\frac{2\beta\sin\theta(1+\cos\theta)}{\beta^2\cos^2\theta-1}$	0
$-,+ \rightarrow +,-$	$\frac{2\beta(\cos\theta-1)\sin\theta}{\beta^2\cos^2\theta-1}$	0
$-,+ \rightarrow +,+$	$\frac{2\beta\sin^2\theta}{\gamma(\beta^2\cos^2\theta - 1)}$	0
+,, -	$\frac{2\beta\sin^2\theta}{\gamma(1-\beta^2\cos^2\theta)}$	0
+, +	$\frac{2\beta(\cos\theta-1)\sin\theta}{\beta^2\cos^2\theta-1}$	0
+,	$\frac{2\beta\sin\theta(1+\cos\theta)}{\beta^2\cos^2\theta-1}$	0
+, - → +, +	$\frac{2\beta\sin^2\theta}{\gamma(\beta^2\cos^2\theta - 1)}$	0

t decay vertices

TABLE II. t and \bar{t} decay factors as defined in the text. The first column should be multiplied by E_b and the second column by $E_{\bar{b}}$, the b and \bar{b} energies in the parton center of mass frame.

λ, λ'	${\mathcal T}_t(\lambda,\lambda')$	${\mathcal T}_{ar{t}}(\lambda,\lambda')$
-,-	$\sqrt{s}(1+\beta)(1-\cos\theta\cos\theta_b-\sin\theta\sin\theta_b\cos\phi_b)$	$\sqrt{s}(1-\beta)(1-\cos\theta\cos\theta_{\bar{b}}-\sin\theta\sin\theta_{\bar{b}}\cos\phi_{\bar{b}})$
-, +	$2m_t(-\sin\theta\cos\theta_b + \cos\theta\sin\theta_b\cos\phi_b - i\sin\theta_b\sin\phi_b)$	$2m_t(-\sin\theta\cos\theta_{\bar{b}}+\cos\theta\sin\theta_{\bar{b}}\cos\phi_{\bar{b}}+i\sin\theta_{\bar{b}}\sin\phi_{\bar{b}})$
+, -	$2m_t(-\sin\theta\cos\theta_b + \cos\theta\sin\theta_b\cos\phi_b + i\sin\theta_b\sin\phi_b)$	$2m_t(-\sin\theta\cos\theta_{\bar{b}}+\cos\theta\sin\theta_{\bar{b}}\cos\phi_{\bar{b}}-i\sin\theta_{\bar{b}}\sin\phi_{\bar{b}})$
+,+	$\sqrt{s}(1-\beta)(1+\cos\theta\cos\theta_b+\sin\theta\sin\theta_b\cos\phi_b)$	$\sqrt{s}(1+\beta)(1+\cos\theta\cos\theta_{\bar{b}}+\sin\theta\sin\theta_{\bar{b}}\cos\phi_{\bar{b}})$

- Notice that the azimuthal angles that characterize the correlation only appear in the "mixed" helicity factors
- CP violation arises from interference between amplitudes with different helicities for the top intermediate state

Comments

- The resulting asymmetry is purely CP violating (as expected), even though the calculation included absorptive phases in Higgs production vertex
- For LHC use CTEQ6M pdf's at √S = 14 TeV
- The asymmetry is smaller than in Higgs decay in our model since non-resonant production is larger and CP conserving
- q \overline{q} annihilation very small contribution to asymmetry (no interference with resonant diagram)

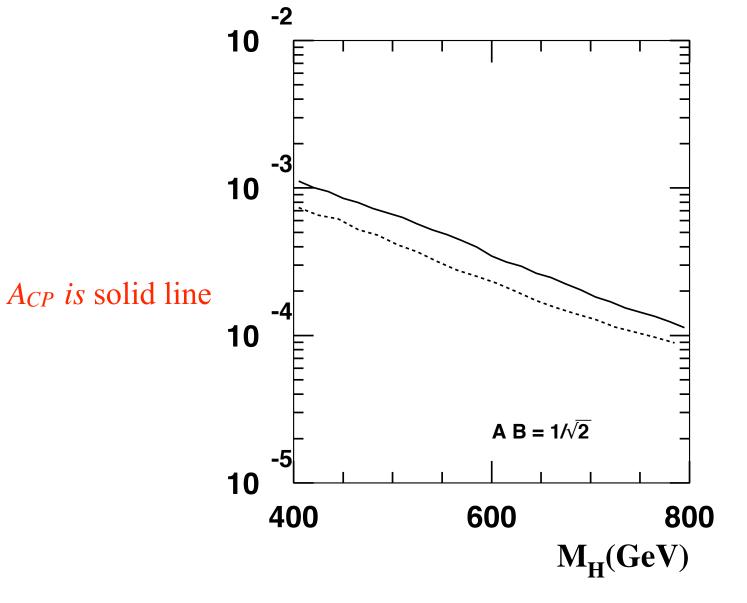


FIG. 7: Normalized CP violating asymmetry at the LHC for $A,B=1/\sqrt{2}$. The solid and dotted curves correspond to the asymmetries A_{CP} , Eq. 30, and \hat{A}_{CP} , Eq. 31 respectively. In this case both contributions to the asymmetry are included and they are normalized to the total $pp \to t\bar{t}$ cross-section.

More dilution

 The asymmetry also requires reconstruction of t and b directions in parton CM frame (H rest frame)

$$A_{CP} = \frac{N_{\text{events}}(\vec{p}_{\bar{b}} \cdot (\vec{p}_{b} \times \vec{p}_{t}) > 0) - N_{\text{events}}(\vec{p}_{\bar{b}} \cdot (\vec{p}_{b} \times \vec{p}_{t}) < 0)}{N_{\text{events}}(\vec{p}_{\bar{b}} \cdot (\vec{p}_{b} \times \vec{p}_{t}) > 0) + N_{\text{events}}(\vec{p}_{\bar{b}} \cdot (\vec{p}_{b} \times \vec{p}_{t}) < 0)}$$

$$\tag{13}$$

- This is not CP-odd in the lab frame, however it is possible to construct more complicated asymmetries for the lab frame - more dilution
- With reconstruction of top and bottom momenta directions in the lab frame a CP-odd example is:

$$\hat{A}_{CP} \equiv \frac{N_{\text{events}}((\vec{p}_{\bar{t}} - \vec{p}_t) \cdot (\vec{p}_b \times \vec{p}_{\bar{b}}) > 0) - N_{\text{events}}((\vec{p}_{\bar{t}} - \vec{p}_t) \cdot (\vec{p}_b \times \vec{p}_{\bar{b}}) < 0)}{N_{\text{events}}((\vec{p}_{\bar{t}} - \vec{p}_t) \cdot (\vec{p}_b \times \vec{p}_{\bar{b}}) > 0) + N_{\text{events}}((\vec{p}_{\bar{t}} - \vec{p}_t) \cdot (\vec{p}_b \times \vec{p}_{\bar{b}}) < 0)}.$$



FIG. 6. *CP* asymmetry for *s*-channel Higgs production and subsequent decay at the LHC. The solid and dotted curves correspond to the asymmetries A_{CP} , Eq. (30), and \hat{A}_{CP} , Eq. (31) respectively.

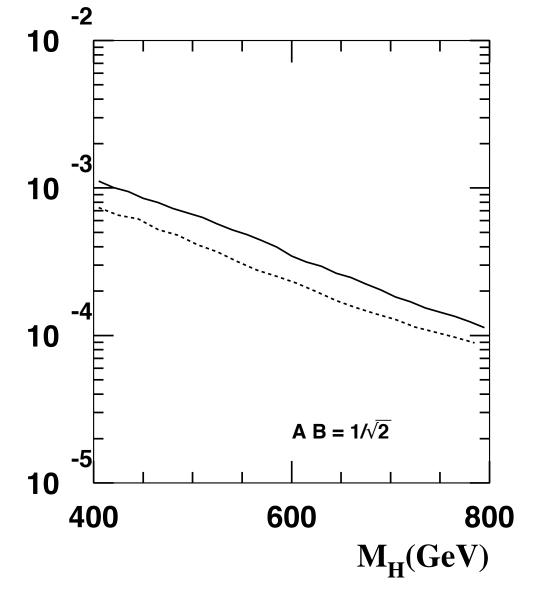


FIG. 7: Normalized CP violating asymmetry at the LHC for $A,B=1/\sqrt{2}$. The solid and dotted curves correspond to the asymmetries A_{CP} , Eq. 30, and \hat{A}_{CP} , Eq. 31 respectively. In this case both contributions to the asymmetry are included and they are normalized to the total $pp \to t\bar{t}$ cross-section.

 The observable can be generalized at the cost of further dilution, for example, if the top momentum can't be reconstructed one could use

$$\tilde{A}_{CP} \equiv \frac{N_{\text{events}}((\vec{p}_{\ell^+} - \vec{p}_{\ell^-}) \cdot (\vec{p}_b \times \vec{p}_{\bar{b}}) > 0) - N_{\text{events}}((\vec{p}_{\ell^+} - \vec{p}_{\ell^-}) \cdot (\vec{p}_b \times \vec{p}_{\bar{b}}) < 0)}{N_{\text{events}}((\vec{p}_{\ell^+} - \vec{p}_{\ell^-}) \cdot (\vec{p}_b \times \vec{p}_{\bar{b}}) > 0) + N_{\text{events}}((\vec{p}_{\ell^+} - \vec{p}_{\ell^-}) \cdot (\vec{p}_b \times \vec{p}_{\bar{b}}) < 0)}.$$

 We have assumed that the final state consists of reconstructed particleantiparticle pairs. If this is not true there can be CP conserving background to the asymmetries (or what happens to X?)

Conclusions

- We have presented an example of a triple product correlation for the LHC that is CP-odd
- Since the LHC is a pp collider, our signal relies on the CP properties of the final state.
- We have estimated the asymmetry in a simple model of CP violation for Higgs decay
- Detailed studies of background, reconstruction, etc are under study

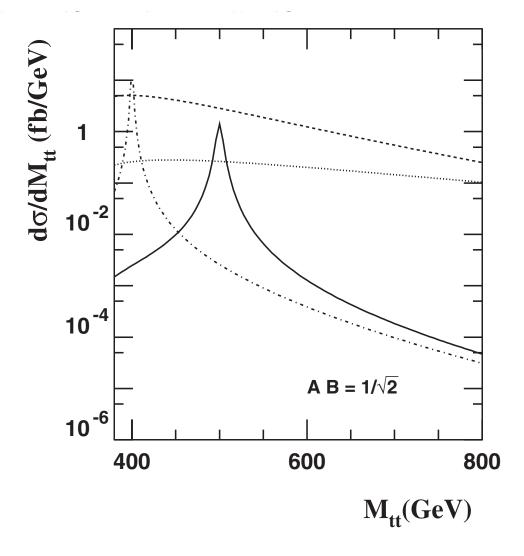


FIG. 5. $t\bar{t}$ production mechanisms at the LHC. The larger cross section indicated by the dashed line corresponds to gluon fusion. The dotted line indicates light $q\bar{q}$ annihilation. We also show the resonant Higgs production for two different values of the Higgs mass.