Measurement of B(t→Wb)/B(t→Wq) at DØ

Daekwang Kau Florida State University DPF 2006, Hawaii October 30, 2006

1

- B(t \rightarrow Wb) ~ 100 % (from V_{tb}) in the Standard Model
- We can write the ratio R = B(t \rightarrow Wb) / B(t \rightarrow Wq)

$$R = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2} = |V_{tb}|^2$$

- The CKM matrix element $|V_{tb}|$ is constrained based on the assumptions : 1. The CKM matrix is unitary 2. Quark has the three generation structure
- |V_{tb}| is bounded between 0.9990 and 0.9992
- R measurement analysis provides a cross check of the assumptions and the SM prediction
- A deviated value of R could lead us new physics such as a fourth quark generation

Top Quark and Background

Top-pair production

- Lepton + jets
 - One W decays hadronically
- One W decays leptonically
 Dilepton
 - Both Ws decay leptonically

W+Jets

Contain a real lepton from W decay Wjj (j = g,u,d,s,c,b)

Misidentified multijet events (QCD)

Contain fake isolated electron or muon

Diboson events

WW, **WZ**, **ZZ**

DØ Detector and Dataset

Event Selection

Requirements

- 1 isolated lepton (electron or muon) p_T > 20 GeV
- Jets: one or more jets with $|y| < 2.5 p_T > 15GeV$
- No second high p_T lepton

b-jet identification (B-tagging)

- Secondary vertex tagging algorithm
- Three separate datasets: exactly one tagged jets, at least two tagged jets or zero tagged jets

- Find a decay length, L for each vertex
- Define the decay length significance in transverse plane

 $L_{significance} = L_{xy} / \sigma_{Lxy}$

If L_{significance} > 7, the event passes
 SVT algorithm

- Tag rate ~ 40%
- Mistag rate ~ 0.2%

- Decide the ratio R and $t\bar{t}$ cross section σ simultaneously
- Separate final states with (electron, muon) (3, 4jets) (0, 1, 2tags)
- Expected event numbers are fitted to observed data numbers for the 1, 2 tag channels
- Due to small tt event numbers in the 0 tag channels topological likelihood discriminant is constructed

$$R = \frac{B(t \to Wb)}{B(t \to Wq)}$$

b-tagged jet number	0		1		2	
Jet mulitplicity	3	4	3	4	3	4
	not used	topological likelihood	fit to the observed event numbers			

For electron (or muon) channel

tt Event Tagging Probabilities

• tt event tagging probability: fraction of identified tt event number and total tt event number

- If R is equal to 1 the branching fraction $B(t \rightarrow Wb)$ is 100%
- If R is less than 1 the decay of the two top quarks in a $t\bar{t}$ event can produce either 0, 1 or 2 b quarks

 The event tagging probabilities are derived separately for the three possibilities

Scenario 1 $t\bar{t} \rightarrow W^+ b W^- \bar{b}$ two b quarks Scenario 2 $t\bar{t} \rightarrow W^+ b W^- \bar{q}_l$ one b quark one light quark Scenario 3 $t\bar{t} \rightarrow W^+ q_l W^- \bar{q}_l$ two light quarks

tt Event Tagging Probabilities

number of b quarks in the final states	0	1	2
probabilities to obtain each of the three final states	(1-R) ²	2R(1-R)	R ²

tt event tagging
probability=probability to have
each final stateXprobability to identify
each final statephysics issuedetection issue

 $\mathsf{P}^{n \operatorname{tag}}(t\bar{t}, \mathsf{R}) = \mathsf{R}^2 \mathsf{P}^{n \operatorname{tag}}(t\bar{t} \rightarrow bb) + 2 \mathsf{R}(1-\mathsf{R})\mathsf{P}^{n \operatorname{tag}}(t\bar{t} \rightarrow bq_{|}) + (1-\mathsf{R})^2 \mathsf{P}^{n \operatorname{tag}}(t\bar{t} \rightarrow q_{|}q_{|})$

- Use tt Monte Carlo to compute the event tagging probabilities
- No Monte Carlo samples for

 $t\bar{t} \to W^+ b W^- \bar{q}_l$ $t\bar{t} \to W^+ q_l W^- \bar{q}_l$

Scenario 2Scenario 3 $t\bar{t} \rightarrow W^+ b W^- \bar{q}_l$ $t\bar{t} \rightarrow W^+ q_l W^- \bar{q}_l$ $P^{n tag}(t\bar{t}, R) = R^2 P^{n tag}(t\bar{t} \rightarrow bb) + 2 R(1-R)P^{n tag}(t\bar{t} \rightarrow bq_l) + (1-R)^2 P^{n tag}(t\bar{t} \rightarrow q_l q_l)$

- Use standard tt Monte Carlo
- Consider a jet matching \bar{b} from \bar{t} as light jet
- Apply light jet tagging probability to the $\bar{\mathbf{b}}$
- Apply b tagging probability to the other b jet from t
- Compute 0, 1 and 2 tag probabilities

- Use standard tt Monte Carlo
- Apply light jet tagging probabilities to jets matching the b and \bar{b}
- Compute 0, 1 and 2 tag probabilities

standard tī Monte Carlo $t\bar{t} \rightarrow W^+ b W^- \bar{b}$

- \bullet R and σ are obtained by a maximum likelihood fit to the observed number of events
- Eight different channels : electron or muon with 3 or \geq 4 jets and one or two tags

$$\mathcal{L} = \prod_{i} P(N_{i}^{obs}, N_{i}^{predicted}(R, \sigma))$$

• Here $P(N^{obs}, N^{predicted})$ denotes the Poisson probability

R = 1

Treatment of 0 Tag Sample

- Total number of observed events in the 0 tag sample is too small to constrain R and σ
- Use topological discriminating variables and build likelihood

Treatment of 0 Tag Sample

• Apply only in electron or muon with \geq 4 jets and 0 tag sample

Final Binned Likelihood Fit

14

Conclusions

Results

First measurement of R in DØ

Good agreement with the standard model expectation Topological likelihood in the 0 tag samples make significant improvement