

Measurement of the tr Production Cross Section at DØ using b-tagging

- 1. Introduction
- 2. Top Quark Production and Decay
- 3. The lepton + jets Channel
- 4. Method Overview
- 5. Jet Tagging Efficiencies
- 6. Background Estimate
- 7. Results and Summary

Gustavo Otero y Garzón, University of Illinois at Chicago for the DØ experiment

Joint Meeting of Pacific Region Particle Physics Communities October 29 – November 03, 2006; Honolulu, Hawaii

- The top quark was discovered 11 years ago and so far it has been only observed at Fermilab
 - Runl measured σ_{ttbar} to a 25% precision with L~100pb⁻¹ and \sqrt{s} =1.8 TeV
 - At present, 30% higher production rate at $\sqrt{s=1.96}$ TeV and higher luminosity
- The theoretical prediction of σ_{ttbar} has a 9-12% accuracy
- Top pair events are an important background source for other physics processes
 - Single Top
 - Higgs search
- Measuring the top pair production cross section is the first step toward any Top property analysis

Top Quark Pair Production and Decay

• Top quarks are mainly produced in pairs (strong interactions) at Tevatron energies

- No hadronic bound state due to short lifetime
- Electroweak decay

UIC

• Final state determined by the decay of the W boson

- dilepton channel (low bkg)
- lepton + jets channel (moderate bkg)
- all hadronic channel (huge bkg)

Lepton = e, μ from W or from τ from W

Gustavo Otero y Garzón, UIC

October 30th, 2006

The Lepton + Jets Channel

signal

1 isolated high p_T lepton (μ, e)
1 ν (reconstructed as missing transverse energy (MET))
≥ 3 high p_T central jets

Background

W (
$$\rightarrow$$
 / ν) + ≥ 3 jets

QCD Multijet .fake isolated lepton .misreconstructed MET

Method Overview

b-tagging

- *b*-quarks hadronize into long lived (ct ~ 450μm) *B* hadrons which travel a few millimeters before decaying
- b-jets can be identified!
 - Soft Lepton Tagging: lepton within a jet from a semileptonic B decay
 - Secondary Vertex Tagging: reconstruct SV from tracks significantly displaced from the PV originating from lifetime effects of B hadrons

- To decouple tagging efficiency from tracking inefficiencies and calorimeter noise problems the SVT tagging probability is split into:
 - Probability for a jet to be taggable
 - Probability for a jet to be tagged

Taggability

A jet is taggable if it has a matched track-jet
Tracks in a track-jet must have hits in the SMT
Strong dependence on the SMT geometry

Parameterized vs. η^{jet} and p_T^{jet} in 6 bins of sign(PV_Z * η^{jet})*|PV_Z| Measured in *I*+jets data

Taggability is jet flavor dependent
Corrected with ratios of *b*(*c*) / light taggabilities measured in MC

b-Tagging Efficiency

- Semileptonic *b*-tagging rate measured purely from 2 μ-in-jet data samples (subset enriched in heavy flavor)
- Parameterized in terms of p_T^{jet} and η^{jet}

- Calibrated by data-to-MC scale factor given by the ratio of semileptonic b-tagging efficiencies measured in data and bb MC
- Inclusive b (c) tagging rates measured in tt MC and corrected with SF_{data-MC}

$$SF_{\text{data-to-MC}}(p_T,\eta) = \frac{\epsilon_{b\to\mu}^{\text{data}}(p_T,\eta)}{\epsilon_{b\to\mu}^{\text{MC}}(p_T,\eta)} \frown$$

- A light (*u*,*d*,*s*,*g*) jet identified as heavy flavor is a mistag (fake tag)
- Originated from misreconstruction and resolution effects
- Determined from the negative tagging rate
 - Measured in QCD data, dominated by light jets (ε₋^{data})

MC based corrections to ε^{data} for:

- Heavy flavor contamination in QCD data (~0.5)
- Long lived particles (K^0_s , Λ^0) not present in ε_1 (~1.6)

Event Tagging Probability

• W+jets tagging probabilities:

- Add probabilities for different flavor configurations
- Weight each configuration with the corresponding flavor fraction
- Fractions determined as cross section ratios of hadronmatched-jets ALPGEN MC samples

- QCD-multijet production in the tagged sample:
 - Apply the Matrix Method to the tagged data sample
- Additional low rate electroweak background processes $N^{presel}_{i} = \sigma^{theory}_{i} \times \varepsilon^{presel}_{i} \times BR \times L$ $i = single top, diboson and Z \rightarrow \tau\tau$

 $N^{tag}_{bkg i} = N^{presel}_{i} \times P^{tag}_{i}$

W+jets (dominant background)
 Overall normalization from data

 $N^{Presel}_{W+jets} = N^{sig} - N^{Presel}_{tt} - \sum_{i} N^{presel}_{it}$

 Apply different tagging probabilities based on the jets' flavor configurations

The ttbar cross-section is calculated combining 8 channels

- e + jets and μ + jets
- single tags and double tags
- = 3 jets and ≥ 4 jets

Systematic Uncertainties

- SLT tagging depends on the physics process
 - Tagging rates measured in MC for each process (in agreement with tagging rates measured in data!)
- Same philosophy as the SVT analysis
 - Same preselected data set
 - Same backgrounds + Z $\rightarrow \mu^{+}\mu^{-}$ (determined from MC, normalized to data)
 - Similar cross section extraction procedure (single and double together)

Source	$\sigma_+(\mathrm{pb})$	$\sigma_{-}(\mathrm{pb})$
Muon preselections	+0.18	-0.13
Electron preselections	+0.19	-0.13
EM triggers	+0.00	-0.03
Muon triggers	+0.12	-0.09
Jet triggers	+0.00	-0.04
Jet energy scale	+0.19	-0.12
Jet energy resolution	+0.02	-0.02
Jet ID	+0.14	-0.12
Z + jets normalization	+0.06	-0.07
Heavy flavor tagging	+0.24	-0.17
Fake tagging rate	+0.84	-0.78
Matrix method	+0.33	-0.35
Monte Carlo statistics	+0.25	-0.27
W fractions	+0.13	-0.19
Total systematics (quad sum of the above	+1.04	-0.98

Results

$$\sigma = \frac{N_{observed}^{tag} - N_{background}^{tag}}{Br \cdot \mathcal{L} \cdot \varepsilon_{presel} \cdot P^{tag}}$$

Perform a maximum likelihood fit to the observed number of events incorporating all systematic uncertainties in the fit using a nuisance parameter likelihood method

$$I + \text{jets}: \sigma_{\text{ttbar}} = 6.6 \pm 0.9(\text{stat} + \text{syst}) \pm 0.4(\text{lum}) \text{ pb} \text{ SVT}$$

$$I + \text{jets}: \sigma_{\text{ttbar}} = 7.3 \pm 2.0_{-1.8}(\text{stat} + \text{syst}) \pm 0.4(\text{lum}) \text{ pb} \text{ SLT}$$

$$Based \text{ on } 425 \text{ pb}^{-1} \text{ of } D\emptyset \text{ data}$$

$$\int_{0}^{2} \int_{0}^{2} \int_{0}^{\pi_{p\bar{p}} + \text{it.x}} \text{Total uncertainty} \text{Kidonakis et al.} \int_{0}^{\pi_{p\bar{p}} + \text{it.x}} \text{Total uncertainty} \text{Kidonakis et al.} \int_{0}^{\pi_{p\bar{p}} - \text{it.x}} \text{Theoretical uncertainty} \text{Kidonakis et al.} \text{Kidonakis and R. Vogt. Phys. Rev. D 68 (2003)}$$

Gustavo Otero y Garzón, UIC

October 30th, 2006

Summary

- Entering the top quark precision measurement era at the Tevatron
- Results in agreement with the Standard Model prediction at NLO
- First preliminary DØ Runll result with SLT
- SVT analysis currently DØ's most precise top cross section measurement (down to 15% uncertainty)

 - At the DØ gate on its way to PRD (FERMILAB-PUB-06-386-E)

... expect fb⁻¹ results soon!

Back Up Slides

The Tevatron and DØ

Tevatron

- Proton anti-proton collider
- √s = 1.96 TeV
- ~1.8 fb⁻¹ delivered
- Expected x40-80 Run I data set!

DØ

- A truly international collaboration
- Multipurpose detector
 - central tracking embedded in a solenoidal field
 - preshowers
 - EM and hadronic calorimeters
 - muon system

- Predicted in the'70s by the SM and discovered in 1995
 - Least well studied component of the SM (only produced at the Tevatron so far)
 - Only known fermion with a mass at the natural Electroweak scale
 - Lifetime (5x10⁻²⁵ s) shorter than the hadronization time (no top hadronic bound states)
- The top quark is relevant for many Electroweak analyses
- Strongest coupling to the Higgs (Yukawa coupling $\lambda_t \propto m_t \sim 1$)

Corrections to W and Z boson masses from top quark and Higgs boson loops constrain the Higgs boson mass

 $M_w^2 = M_w^{(0)} x(1 - \Delta)$ -LEP1 and SLD ---- LEP2 and Tevatron (prel.) 80.5 68% CL [GeV] M^w [GeV] Z ~~~~ ~~~ Z W~~~~ ~~~ W $\Delta_t^{-1} \sim M_t^2$ 80.3 h h 150 175 W.Z m, [GeV] for Tevatron in Run II: $\Delta_{\rm H} \sim \ln ({\rm M_{H}}^2)$ Goal ΔM 3 GeV 20 MeV ΔM

200

UIC

Top Quark Physics

W Helicity Jet 1(b) nuon 👖 **Production Cross** Va neutrino **Section Production** proton beam -> **Kinematics** ← antiproton beam $|V_{tb}|$ **Top Spin Polarization** Resonance neutrino 🖗 **Production** electron 6 Jet 2 (b)

Top Mass

Top Charge Branching Ratios $|V_{tb}|$ Spin Correlation Non-SM decays

Top quarks are mainly produced in pairs (through strong interactions) at Tevatron energies (electroweak production to be observed soon!)

 $2 \times m_t$

$$\frac{q}{\overline{q}}$$

 $\sigma_{\rm inel}$ / $\sigma_{\rm ttbar}$ ~ 10¹⁰

- High luminosity
- High efficiency

	$\sigma_{t\bar{t}}^{NLO}(pb)$	qq→tt	gg→tī
Run I (1.8 TeV)	4.87±10%	90%	10%
Run II (2.0 TeV)	6.70±10%	85%	15%
LHC (14 TeV)	803±15%	10%	90%

Top Quark Decay

- $\Gamma_t^{SM \approx}$ 1.5 GeV (m_t=175 GeV) $\Rightarrow \tau \sim 10^{-25} s \Rightarrow no hadronic bound states$
- Top quark decays via the Weak interaction exclusively as $t \rightarrow W b$
 - |V_{tb}|>0.999

$$R = \frac{BR(t \to Wb)}{BR(t \to Wq)} = \frac{\left|V_{tb}\right|^2}{\left|V_{tb}\right|^2 + \left|V_{ts}\right|^2 + \left|V_{td}\right|^2}$$

- R = 1.03 ± 0.19 (hep-ex/0503002)
- Negligible rates for FCNC (t \rightarrow q γ ,Z,g)
- Final state determined by the decay of the W boson:

dilepton channel (low bkg)
lepton + jets channel (moderate bkg)
all hadronic channel (huge bkg)

Lepton \equiv e, μ from W or τ from W

Preselected Sample

Require:

- All events pass the signal trigger
- A tight isolated lepton
- Large MET (neutrino)
- At least one jet
- MET separated from the lepton in the transverse plane
- Second lepton veto (orthogonal to dilepton analyses)
- Composition of the preselected sample determined by defining two samples (Matrix Method)
 - Tight sample : the preselected sample (N_t)
 - Loose sample : events passing the preselection but with a loose lepton requirement

	1 jet	2 jets	3 jets	≥ 4 jets						
	e+jets									
N_t	6153	2217	466	119						
$N_t^{ m sig}$	$5806{\pm}82$	$1976{\pm}58$	$395{\pm}24$	$99.8 {\pm} 11.7$						
$N_t^{ m QCD}$	347 ± 14	$241{\pm}11$	71 ± 5	19.2 ± 2.4						
		$\mu + $	jets							
N_t	6827	2267	439	100						
N_t^{sig}	$6607{\pm}85$	$2155{\pm}50$	$406{\pm}22$	$91.4 {\pm} 10.7$						
$N_t^{\rm QCD}$	220 ± 12	112 ± 10	33 ± 5	8.6 ± 2.1						

 $N_{I} = N^{sig} + N^{QCD}$ $\varepsilon_{sig} \downarrow \qquad \varepsilon_{QCD} \downarrow$ $N_{t} = \varepsilon_{sig} N^{sig} + \varepsilon_{QCD} N^{QCD}$

€ _{sig}	
~85%	

- efficiency for a loose lepton from a W decay to pass the tight criteria
- $\epsilon_{QCD} \rightarrow$ rate for a loose lepton ~15% in QCD to appear to be tight

• Top events populate 3rd and 4th jet multiplicity bins

• Events with 1 and 2 jets used as control of background estimate

Gustavo Otero y Garzón, UIC

October 30th, 2006

- ttbar and W+jets are generated using ALPGEN 1.3 followed by PYTHIA
 6.2 to simulate the underlying event and the hadronization
- Other small backgrounds
 - Single top (CompHEP/PYTHIA)
 - Diboson (ALPGEN/PYTHIA) + NLO K-factor
 - Z/gamma* (PYHIA) @ NNLO
- TAUOLA simulates τ decays
- W+jets samples are generated separately for processes with 1,2,3, and 4 or more partons in the final state using ALPGEN

process	σ (pb)	NLO correction	Branching ratio		
			e	μ	
$tb \rightarrow \ell \nu bb$	0.88	-	0.1259	0.1253	
$tbq \rightarrow \ell \nu bbj$	1.98	-	0.1259	0.1253	
$WW \rightarrow \ell \nu j j$	2.04	1.31	0.3928	0.3912	
$WZ \rightarrow \ell \nu j j$	0.61	1.35	0.3928	0.3912	
$WZ \rightarrow jj\ell\ell$	0.18	1.35	0.4417	0.4390	
$ZZ \rightarrow jj\ell\ell$	0.16	1.28	0.4417	0.4390	
$Z/\gamma^* \to \tau \tau$	253	-	0.3250	0.3171	

process	σ (pb)	process	σ (pb)	process	σ (pb)	process	σ (pb)
W_j	1600	W j j	517	W j j j	163	W j j j j	49.5
Wc	51.8	Wcj	28.6	Wcjj	19.4	Wcjjj	3.15
		$Wb\overline{b}$	9.85	$Wb\overline{b}J$	5.24	$Wb\overline{b}Jj$	2.86
		$W c \bar{c}$	24.3	$W c \bar{c} J$	12.5	$W c \bar{c} J j$	5.83

TABLE XIII: W+jets boson processes in ALPGEN and their cross sections for the leptonic W boson decay, $\sigma \equiv \sigma_{p\bar{p}\to W+jets}Br(W\to l\nu)$, where j=u,d,s,g and J=u,d,s,g,c.

- LO parton level calculations from ALPGEN need to be combined with the partonic evolution from PYTHIA to avoid double counting of configurations leading to the same final state
- Ad-hoc MLM matching is used: matrix element partons are matched to reconstructed jets within a 0.5 cone and classified according to the number of HF jets in the final state
 - Keep events only if the number of reconstructed jets equals the number of matrix element partons in the 1,2,3 jets bin.
 - Keep all events with >=4 reconstructed jets in the n>=4 jets bin, independently of the additional number of non-matched light jets.
- NLO K-factor applied to the Wbbar, Wccbar, W(bbbar) and W(ccbar)

Contribution	W+1 jet	W+2 jets	W+3 jets	$W+\geq 4$ jets
$Wb\overline{b}$		$(1.23 \pm 0.08)\%$	$(2.05 \pm 0.21)\%$	$(2.84 \pm 0.16)\%$
$W c \overline{c}$		$(1.69 \pm 0.12)\%$	$(2.94 \pm 0.37)\%$	$(4.44 \pm 0.29)\%$
$W(b\overline{b})$	$(0.86\pm 0.03)\%$	$(1.46 \pm 0.09)\%$	$(2.03 \pm 0.15)\%$	$(2.99 \pm 0.24)\%$
$W(c\bar{c})$	$(1.23\pm 0.05)\%$	$(2.26 \pm 0.15)\%$	$(3.08 \pm 0.24)\%$	$(5.06 \pm 0.54)\%$
Wc	$(4.41\pm 0.18)\%$	$(6.25 \pm 0.43)\%$	$(4.93 \pm 0.48)\%$	$(4.30 \pm 0.23)\%$
W + light	$(93.5 \pm 0.2)\%$	$(87.1 \pm 0.7)\%$	$(85.0 \pm 1.1)\%$	$(80.4 \pm 0.7)\%$

Systematic error on the fractions comes from difference between matching schemes, choice of matching cone size, PDF and renormalization and factorization scales

- For all MC samples, the jet flavor (b, c, or light) is determined by matching the direction of the reconstructed jet to the hadron flavor within a cone of R=0.5
- If more than one hadron is found within the cone, the jet is considered a:
 - b-jet, if the cone contains at least one B hadron
 - c-jet, if the cone contains at least one C, and no B hadron
 - light, if the cone contains no B or C hadron.

- The dominant background by far
- Overall normalization before tagging obtained directly from Data

$$N_{(W \to l\nu)+nj}^{presel} = N_t^{sig} - N_{t\bar{t} \to l+jets}^{presel} - N_{t\bar{t} \to ll}^{presel} - \sum_{bkg \ i} N_{bkg \ i}^{presel}$$

Number of W+jets events in the tagged sample determined by

$$N_{(W \to l)+nj}^{tag} = N_{(W \to l)+nj}^{presel} P_{(W \to l)+nj}^{tag}$$

 The event tagging probability results from adding the tagging probabilities for the different flavor configurations weighted with their fractions

$$P_{(W \to l)+nj}^{tag} = \sum_{\Phi_n} F_{\Phi_n} P_{\Phi_n}^{tag}$$

$$F_{\Phi,n} = \frac{\sigma_{\Phi,n}^{\text{eff}}}{\sum_{\Phi} \sigma_{\Phi,n}^{\text{eff}}}$$

$$F_{\Phi,n} = \frac{\sigma_{\Phi,n}^{\text{eff}}}{\sum_{\Phi} \sigma_{\Phi,n}^{\text{eff}}}$$

Secondary Vertex Tagger Algorithm

The Secondary Vertex Tagger (SVT) is a lifetime tagger that explicitly reconstructs vertices which are displaced from the Primary Vertex

- Use of tracks with significant impact parameter with respect to the Primary Vertex
- Build-up method fitting pairs of selected tracks within track-jets
- Removes track pairs in the mass windows corresponding to K_{S}^{0} , Λ^{0} and photon conversions ($\gamma \rightarrow e^{+}e^{-}$)

 A jet is identified as a b-jet (tagged) if it contains a reconstructed secondary vertex within a jet

Top events have two *b*-jets while events from other processes very seldom have heavy flavor!

- Run Quality, Luminosity Block and Event Quality Selections applied
- A lepton and a jet are required at trigger level
- Trigger efficiencies are estimated by folding into the MC the per-object individual trigger conditions measured in Data

Gustavo Otero y Garzón, UIC

October 30th, 2006

- Determine the number of selected events for each background
- Parameterize the tagging efficiencies determined in data
- Determine event tagging probabilities for all the backgrounds
- Use the Monte Carlo simulation event kinematics and fold in the tagging efficiencies from data to estimate the number of tagged events
- Estimate the ttbar cross section from the excess in the actual number of tagged events with 3 and ≥ 4 jets over the background prediction

$$\sigma = \frac{N_{observed}^{tag} - N_{background}^{tag}}{BR \cdot L \cdot \varepsilon_{presel} \cdot \bar{P}^{tag}}$$

- b-tagging rate is measured purely from data applying SVT and Soft Lepton Tagger to two samples:
 - muon-in-jet
 - muon-in-jet away jet tagged (enriched in heavy flavor)
- Use system8
 - Samples with different fractions of signal and background
 - SVT and SLT have different efficiencies for signal and background
 - SVT and SLT decorrelated
 - 8 equations with 8 unknowns
 - Parameterize in terms of p_T^{jet} and y^{jet}

Systematic uncertainties arise from the variation of the correlation parameters in System8

Inclusive b(c)-tagging efficiency in MC

Measured in ttbar

b-inclusive (ttbar MC)

c-inclusive (ttbar MC)

Calibrated by data-to-MC scale factor given by the ratio of semileptonic b-tagging efficiencies measured in data and bbbar MC

$$SF_{b\to\mu}(p_T,\eta) = \frac{\epsilon_{b\to\mu}^{data}(p_T,\eta)}{\epsilon_{b\to\mu}^{MC}(p_T,\eta)}$$

Systematic uncertainties on the inclusive efficiencies coming from the difference between parameterizations obtained in ttbar MC with two choices of b-fragmentation models. Systematic uncertainty on semileptonic b efficiency in MC takes as the difference in efficiency between bbbar and ttbar.

Mistag Rate

The Negative Tagging Rate is corrected for:

Heavy flavor contamination in QCD data (estimated in QCD MC)

$$SF_{hf}(p_T, y) = rac{arepsilon_{-}^{light}(p_T, y)}{arepsilon_{-}^{inclusive}(p_T, y)}$$

Remaining long lived particles (K⁰_s, A⁰) not present in the negative tagging rate (estimated in QCD MC)

$$SF_{ll}(p_T, y) = rac{arepsilon_+^{light}(p_T, y)}{arepsilon_-^{light}(p_T, y)}.$$

• The mistag rate is then

$$\varepsilon^{light}_{+}(p_T, y) = \varepsilon^{data}_{-}(p_T, y) SF_{hf}(p_T, y) SF_{ll}(p_T, y)$$

Systematic uncertainties determined by varying by 20% the b and c fractions in PYTHIA QCD MC used for the SFs

Composition of the Preselected Sample UIC

- The Matrix Method separates QCD from Physics Backgrounds
- Expected number of signal events:

 $N^{presel}_{ttbar} = \sigma^{theory}_{ttbar} \times \varepsilon^{presel}_{ttbar} \times BR \times L$

Expected number of non-W background events:

 $N^{presel} = \sigma^{theory} \times \varepsilon^{presel} \times BR \times L$

i = single top, diboson (*WW*, *WZ*, *ZZ*) and $Z \rightarrow \tau\tau$

	1 jet	2 jets	3 jets	≥ 4 jets
$t\bar{t} \rightarrow l + \text{jets}$	$0.770{\pm}0.029$	$5.29{\pm}0.07$	$11.89 {\pm} 0.11$	$9.59{\pm}0.10$
$t\bar{t} ightarrow ll$	$4.04{\pm}0.07$	$11.55 {\pm} 0.11$	$4.21 {\pm} 0.07$	$0.667 {\pm} 0.029$
tb	$5.96 {\pm} 0.12$	$13.21 {\pm} 0.17$	$2.27{\pm}0.07$	$0.212{\pm}0.023$
tqb	$5.38 {\pm} 0.11$	$10.82 {\pm} 0.15$	$3.76 {\pm} 0.09$	$0.775{\pm}0.044$
$WW ightarrow l u { m jj}$	$6.37 {\pm} 0.23$	$7.06 {\pm} 0.24$	$0.461 {\pm} 0.064$	$0.000 {\pm} 0.000$
$WZ \rightarrow l\nu jj$	$5.64 {\pm} 0.21$	$7.92{\pm}0.25$	$0.565 {\pm} 0.071$	$0.061 {\pm} 0.023$
$WZ \rightarrow jjll$	$0.601{\pm}0.065$	$0.840 {\pm} 0.078$	$0.308 {\pm} 0.047$	$0.006 {\pm} 0.006$
$ZZ \rightarrow jjll$	$0.850 {\pm} 0.071$	$1.09{\pm}0.08$	$0.296 {\pm} 0.043$	$0.037 {\pm} 0.015$
$Z \to \tau^+ \tau^-$	$0.025{\pm}0.002$	$0.012 {\pm} 0.002$	$0.003 {\pm} 0.001$	$0.001{\pm}0.000$

Preselection Efficiencies in the *e*+jets channel

Expected number of W background events:

 $N^{presel}_{W} = N^{sig}_{t} - N^{presel}_{ttbar} - \Sigma N^{presel}_{i}$

UIC

UIC

b-Tagging Sumary

- Estimate the ttbar cross-section from observed excess in the number of tagged events with respect to the background prediction
- Optimum use of the statistical information (single and double tags)

	e+jets				μ +jets			
	1 jet	2 jets	3 jets	$\geq 4 \text{ jets}$	1 jet	2 jets	3 jets	≥ 4 jets
W+light	21.3 ± 0.7	10.4 ± 0.7	2.52 ± 0.19	$0.62 {\pm} 0.13$	24.9 ± 0.8	13.2 ± 0.8	$2.68 {\pm} 0.18$	0.49 ± 0.10
$W(c\bar{c})$	6.7 ± 0.1	3.7 ± 0.2	$0.90 {\pm} 0.07$	0.27 ± 0.06	7.6 ± 0.1	4.3 ± 0.2	$0.91 {\pm} 0.06$	0.26 ± 0.06
$W(b\overline{b})$	19.2 ± 0.4	$9.9 {\pm} 0.3$	$2.31 {\pm} 0.17$	$0.61 {\pm} 0.13$	21.6 ± 0.4	10.9 ± 0.3	$2.36 {\pm} 0.15$	0.54 ± 0.11
Wc	24.8 ± 0.5	11.5 ± 0.4	$1.58 {\pm} 0.12$	$0.26 {\pm} 0.05$	27.6 ± 0.5	12.1 ± 0.4	$1.59 {\pm} 0.11$	0.21 ± 0.04
$W c \overline{c}$		5.1 ± 0.2	1.43 ± 0.15	$0.43 {\pm} 0.09$		5.6 ± 0.2	1.65 ± 0.13	$0.36 {\pm} 0.08$
$W b \overline{b}$		10.3 ± 0.3	$3.08 {\pm} 0.23$	$0.74 {\pm} 0.15$		11.2 ± 0.3	$3.10 {\pm} 0.21$	0.63 ± 0.13
W+jets	72.0 ± 0.9	50.9 ± 1.0	11.8 ± 0.4	$2.93 {\pm} 0.26$	81.7 ± 1.0	57.3 ± 1.0	12.3 ± 0.4	2.49 ± 0.22
QCD	7.1 ± 1.5	10.0 ± 1.7	5.5 ± 1.2	$2.95 {\pm} 0.97$	7.2 ± 0.7	5.8 ± 0.6	$1.58 {\pm} 0.36$	2.78 ± 0.40
single top	2.84 ± 0.06	$6.28 {\pm} 0.09$	1.62 ± 0.05	$0.26 {\pm} 0.02$	$2.29 {\pm} 0.04$	$5.56 {\pm} 0.06$	$1.48 {\pm} 0.04$	$0.24{\pm}0.02$
diboson	1.95 ± 0.08	2.4 ± 0.1	$0.20 {\pm} 0.03$	< 0.01	1.96 ± 0.09	$2.53{\pm}0.10$	$0.19 {\pm} 0.02$	< 0.01
$Z/\gamma^* \to \tau^+ \tau^-$	$0.13{\pm}0.04$	$0.34{\pm}0.06$	$0.02 {\pm} 0.01$	< 0.01	$0.16 {\pm} 0.06$	$0.25{\pm}0.04$	$0.08{\pm}0.04$	$0.01 {\pm} 0.02$
N_{bkgd}	84.0 ± 1.7	69.9 ± 1.9	19.1 ± 1.3	6.2 ± 1.0	93.3 ± 1.2	71.5 ± 1.2	15.6 ± 0.6	5.5 ± 0.5
syst.	+10.9-12.0	+8.7-9.2	+2.0-2.1	+0.5-0.5	+12.2-13.4	+9.4-1.0	+2.0-2.1	+0.5-0.5
$t\bar{t} \rightarrow l + \text{jets}$	0.92 ± 0.04	10.2 ± 0.1	$24.75 {\pm} 0.21$	$17.70 {\pm} 0.19$	0.60 ± 0.03	7.7 ± 0.1	$21.66{\pm}0.21$	$17.64 {\pm} 0.19$
$t\bar{t} \rightarrow ll$	$2.10 {\pm} 0.04$	6.5 ± 0.1	$2.16 {\pm} 0.04$	$0.30 {\pm} 0.01$	$1.47 {\pm} 0.03$	5.5 ± 0.1	$2.00 {\pm} 0.04$	0.27 ± 0.01
N_{pred}	87.0 ± 1.7	86.6 ± 1.9	46.0 ± 1.3	24.1 ± 1.0	95.4 ± 1.2	84.7 ± 1.2	39.3 ± 0.6	23.4 ± 0.5
syst.	+11.0-12.1	+8.8-9.3	+2.2-2.3	+1.4-1.4	+12.3 - 13.5	+9.5-10.1	+2.3-2.4	+1.3-1.4
N_{obs}	95	82	47	33	105	68	41	26

		e+jets		μ +jets			
	2 jets	$3 \mathrm{jets}$	≥ 4 jets	2 jets	$3 \; \rm jets$	$\geq 4 \text{ jets}$	
W + light	$0.017 {\pm} 0.003$	< 0.01	< 0.01	0.027 ± 0.003	< 0.01	< 0.01	
$W(c\bar{c})$	0.014 ± 0.002	< 0.01	< 0.01	0.019 ± 0.003	< 0.01	< 0.01	
$W(bar{b})$	$0.13 {\pm} 0.03$	$0.06 {\pm} 0.01$	< 0.01	$0.29 {\pm} 0.05$	$0.05 {\pm} 0.01$	$0.02 {\pm} 0.01$	
Wc	0.027 ± 0.002	< 0.01	< 0.01	0.039 ± 0.003	< 0.01	< 0.01	
$W c \bar{c}$	$0.24{\pm}0.01$	$0.07 {\pm} 0.01$	$0.02{\pm}0.01$	0.28 ± 0.01	$0.09 {\pm} 0.01$	$0.02 {\pm} 0.01$	
$W b \overline{b}$	$2.80{\pm}0.13$	$0.86{\pm}0.08$	$0.22{\pm}0.05$	3.30 ± 0.14	$0.87 {\pm} 0.07$	$0.17 {\pm} 0.04$	
W+jets	3.23 ± 0.13	$1.00 {\pm} 0.08$	$0.26 {\pm} 0.05$	$3.96 {\pm} 0.15$	$1.02{\pm}0.08$	0.22 ± 0.04	
QCD	< 0.01	$0.27 {\pm} 0.22$	< 0.01	$0.26 {\pm} 0.29$	< 0.01	< 0.01	
Single top	$1.07 {\pm} 0.02$	$0.39 {\pm} 0.02$	$0.07 {\pm} 0.01$	$0.93 {\pm} 0.01$	$0.37 {\pm} 0.01$	$0.07 {\pm} 0.01$	
Diboson	$0.34{\pm}0.02$	$0.04 {\pm} 0.01$	< 0.01	0.26 ± 0.02	$0.03 {\pm} 0.01$	< 0.01	
$Z \to \tau^+ \tau^-$	< 0.01	< 0.01	< 0.01	< 0.01	$0.02 {\pm} 0.02$	< 0.01	
$N_{\rm bkg}$	$4.64{\pm}0.28$	$1.70 {\pm} 0.40$	$0.34{\pm}0.29$	5.42 ± 0.33	$1.44{\pm}0.34$	$0.29 {\pm} 0.38$	
Syst.	+0.83 - 0.81	+0.26 - 0.25	+0.06 - 0.06	+0.99-0.97	+0.27 - 0.25	+0.05 - 0.06	
$t\bar{t} \rightarrow l + jets$	$1.72{\pm}0.19$	7.3 ± 0.3	$6.9 {\pm} 0.2$	1.02 ± 0.15	$6.2{\pm}0.3$	6.3 ± 0.3	
$t\bar{t} \rightarrow ll$	$1.81{\pm}0.02$	$0.65{\pm}0.01$	$0.09{\pm}0.01$	1.50 ± 0.02	$0.61 {\pm} 0.01$	$0.08{\pm}0.01$	
$N_{\rm pred}$	$8.2{\pm}0.3$	$9.7{\pm}0.4$	$7.3 {\pm} 0.3$	7.9 ± 0.4	$8.3 {\pm} 0.3$	$6.7 {\pm} 0.4$	
Syst.	+0.8 - 1.9	+0.6 - 1.3	+0.4 - 1.8	+1.3-1.0	+1.3 - 0.7	+1.7 - 0.4	
$N_{\rm obs}$	12	2	11	6	3	8	