Measurement of the $t\bar{t}$ production cross section at DØ using kinematic information and a search for resonant $t\bar{t}$ production

Maren Vaupel

Bergische Universität Wuppertal, Germany

on behalf of the DØ collaboration

Introduction

Cross section measurement
 Search for tī resonance
 Conclusion

10/31/2006

Top quark physics

10/31/2006

decay: top quarks decay in $\sim 100\%$ to a W boson and a b-quark <u>tt decay signatures:</u>

always 2 jets are b-jets

10/31/2006

Event selection

Background processes

- Physics background
 - electroweak W production
 - + gluon radiation

 $W \rightarrow l\nu + \ge 4$ Jets

- Instrumental background multijet production
 - + fake electrons or fake isolated muons
 - + misreconstructed MET

Estimation of multijet background

- multijet background is estimated from data
 - loose and tight lepton selection

• fixes the ratio between multijet and W+jets background

Topological variables

- use topological event information to separate tt from the background
 - use variables with good discrimination power
 - low sensitivity to the jet energy scale
- variables describing angular distributions of final state objects
 ratios of energy dependent variables

Likelihood

Events

30

KS = 0.990

DATA 352

W+Jets 168 Multiiet 62

tī 124

DØ Runll Preliminary 913 pb⁻¹

e+jets channel

- combine topological variables in a likelihood discriminant
- perform a fit to the data to extract the number of tt events

Control Plots 1+jets

10/31/2006

Results

- cross section for $m_{top} = 175 \text{ GeV}$
- dominating systematic uncertainties:
 - W+jet background modeling $\sim\pm\,0.5$ pb
 - Lepton identification $\sim \pm 0.3$ pb
 - MC statistics $\sim\pm\,0.3$ pb

e + jets
$$\sigma_{pp \to t\bar{t}+X} = 6.6^{+1.2}_{-1.1} (stat) \pm 0.8 (syst) \pm 0.4 (lumi) pb$$

- $\mu + \text{jets}$ $\sigma_{pp \to t\bar{t}+X} = 5.9^{+1.3}_{-1.2} (\text{stat})^{+0.9}_{-0.8} (\text{syst}) \pm 0.4 (\text{lumi}) \text{ pb}$
- combined $\sigma_{p\bar{p}\to\bar{t}t+X} = 6.3^{+0.9}_{-0.8} (stat) \pm 0.7 (syst) \pm 0.4 (lumi) pb$
- agrees with theoretical SM prediction of $\sigma_{_{theo}}$ =6.8 \pm 0.6pb

tt Resonances

- no resonance production in $t\overline{t}$ system is expected in SM
 - would result in larger $\sigma_{p\bar{p}\to t\bar{t}+X}$ than predicted
 - uncertainties leave room for a resonance
- some models predict $t\overline{t}$ bound states
 - e.g. topcolor-assisted technicolor predicts leptophobic Z' Harris, Hill, Parke hep-ph 9911288
- search for resonance signal in invariant mass distribution of the tt decay products in l+jets channel
- X→tt with narrow width i.e. smaller than mass resolution of the detector

b-Jet Identification

jet

- use b-tagging instead of event kinematics
 - good for background reduction
- lifetime of B hadrons $\sim 450 \ \mu m$
- B hadrons travel $L_{xy} \sim 3 \text{ mm before }_{\text{Secondary vtx}}$ they decay
- reconstruction of 3D vertices Primary vtx
- cut on decay length significance
- require at least one b-tagged jet per event
 - efficiency in a tī event is ~ 60 %,
 in a W+jets event only ~ 5 %

displaced track

Reconstruction of the invariant tt mass

Results for l+jets

 \Rightarrow e, µ+jets combined: 108 events, 89.2^{+11.7}_{-13.2} expected

10/31/2006

Systematic uncertainties

relative systematic change on overall normalization of SM background:

source	rel. syst.	uncertainty $(\%)$
	σ^+	σ^{-}
Top quark mass (includes effect on $\sigma_{t\bar{t}}$)	+8.7	-7.6
Signal subtraction from W+jets background estimate	+0.0	-6.6
Jet reconstruction	+5.6	-6.9
Luminosity	+4.6	-4.6
Theoretical uncertainty on $\sigma_{t\bar{t}}$	+4.2	-4.2
W+jets flavor composition	+2.9	-3.0
Jet energy calibration	+2.7	-3.2
b-tagging rate	+2.6	-2.6
MC-to-data correction factors	+2.5	-2.5
Theoretical uncertainty on $\sigma_{singletop}$	+0.2	-0.2
Total	+13.2	-14.8

 uncertainties which change shape of invariant mass distribution are also taken into account

10/31/2006

Limits for l+jets

Conclusion

• Measurement of $t\bar{t}$ cross section in 1 + jets events with nearly 1 fb⁻¹ of data

$$\sigma_{p\bar{p}\rightarrow t\bar{t}+X} = 6.3^{+0.9}_{-0.8} \text{(stat)} \pm 0.7 \text{(syst)} \pm 0.4 \text{(lumi) pb}$$

DØ RunII preliminary

- Search for tt production via intermediate resonance with 370 pb⁻¹ of data
 - no evidence for a new resonance
 - cross section limits
 - leptophobic Z': $M_{Z'} > 680 \text{ GeV}$