THE LO HADRONIC CONTRIBUTION TO $(g-2)_{\mu}$

K. Maltman, DPF06/JPS06 Meeting, Honolulu

OUTLINE

- Background (dispersive formulation, role in SM expectation)
- Current status of EM and/vs. $EM+\tau$ evaluations
- OPE constraints and the EM- τ puzzle
- Prospects for the near future

BASICS

•
$$a_{\mu} \equiv \frac{(g-2)_{\mu}}{2}$$
 known to 0.5 ppm (BNL E821 μ^{\pm} average)

- pure QED contributions dominant: known to 4-loops (plus all 2958 enhanced among 9080 5-loop diagrams, with full 5-loop calculation in progress!) [M. Nio, Tau'06]
- next in size: LO hadronic vacuum polarization contribution $[a_{\mu}]^{had,LO}$
- $[a_{\mu}]^{had,LO}$ (at present) not computable from first principles, but related to EM hadroproduction cross-sections

$$[a_{\mu}]^{had,LO} = \frac{\alpha_{EM}^2}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} ds \frac{K(s)}{s} R(s)$$

with K(s) known, $R(s) = 3s \sigma [e^+e^- \rightarrow hadrons] / 16\pi \alpha_{EM}^2$

ANATOMY OF THE SM PREDICTION FOR a_{μ}

(see M. Passera: hep-ph/0411168)

Source	$\delta(a_\mu) imes 10^{10}$
QED	1165847.88 (3)(4)
LO had VP	$\sim 700~(6 ightarrow 8)??$
EW	15.4(1)(2)
HO had LBL	13.6 (2.5)
HO had VP	-9.79 (9)
Exp. μ^+	11659203 (8)
Exp. μ^-	11659214 (9)
Exp. μ^{\pm} ave	11659208 (6)

 \Rightarrow $[a_{\mu}]^{had,LO}$ has dominant impact on central value and uncertainty of SM prediction

THE DISPERSIVE EVALUATION OF $[a_{\mu}]^{had,LO}$

- $K(s)/s = f(s)/s^2$ with f(s) slowly varying \Rightarrow low E states $(\pi\pi)$ dominant (see also Table)
- Recent EM data (s < 1.8 GeV) since DEHZ03
 - (corrected) SND, (corrected) CMD2 $\pi\pi$ now agree (including increased statistics hep-ex/0610021 CMD2 results) [Figure]
 - KLOE, CMD2/SND $\pi\pi$ DISAGREE [Figure]
 - other 2004+ small $[a_{\mu}]^{had,LO}$ contribution modes: CMD-2 $(\pi^{0}\gamma, \eta\gamma, 3\pi, 2\pi^{+}2\pi^{-})$, SND $(\eta\gamma)$, BABAR $(3\pi, 2\pi^{+}2\pi^{-}, 6\pi, K^{+}K^{-}\pi^{+}\pi^{-})$

The EM $\pi\pi$ Data Situation

SND fit c.f. CMD2 (top), KLOE (bottom)

- CVC (+ IB corrections) \Rightarrow alternate version of I = 1 contribution from non-strange hadronic τ decay data
 - IB corr'ns: $\pi\pi$: short-distance EW, $m_{\pi^{\pm}} m_{\pi^{0}} \neq$, long-distance EM, ρ - ω mixing; 4π : only first two
 - EM, IB-corrected τ disagree (Table, Figure)
 - ALEPH, preliminary BELLE $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$ differ [Figure]
 - HOWEVER, BELLE $[a_{\mu}]^{had,LO}_{\pi\pi}$, $B\left[\tau \rightarrow \pi^{-}\pi^{0}\nu_{\tau}\right] \equiv B_{\pi\pi}$ consistent with LEP, CLEO, *INCONSISTENT* with EM [Table]

Preliminary BELLE $\tau \pi \pi$ Data

(M. Fujikawa, Tau'06)

Eidelman's ICHEP'06 $[a_{\mu}]^{had,LO}$ Update

Contributions to a_{μ}^{had} [in 10 $^{-10}$] from the different energy domains				
Modes	Energy [GeV]	e+e-	au	
Low s expansion	$2m_{\pi}^{}-0.5$	55.6 ± 0.8 ± 0.1 _{rad}	56.0 ± 1.6 ± 0.3 _{SU(2)}	
π*π (+SND+CMD2)	0.5 - 1.8	$449.0 \pm 3.0 \pm 0.9_{rad}$	464.0 ± 3.0 ± 2.3 _{SU(2)}	
<u>n*n 2n</u>	2 <i>m</i> _π – 1.8	16.8 ± 1.3 ± 0.2 _{rad}	21.4 ± 1.3 ± 0.6 _{SU(2)}	
2 <i>π</i> ⁺2 <i>π</i> ⁻(+BaBar)	$2m_{\pi} - 1.8$	13.1 ± 0.4 ± 0.0 _{rad}	12.3 ± 1.0 ± 0.4 _{SU(2)}	
<i>w</i> (782)	0.3 – 0.81	38.0 ± 1.0 ± 0.3 _{rad}	-	
<i>ф</i> (1020)	1.0 – 1.055	35.7 ± 0.8 ± 0.2 _{rad}	-	
Other excl. (+BaBar)	$2m_{\pi} - 1.8$	24.3 ± 1.3 ± 0.2 _{rad}	-	
<i>J/ψ</i> , ψ(2S)	3.08 – 3.11	$7.4 \pm 0.4 \pm 0.0_{rad}$	-	
R [QCD]	1.8 – 3.7	33.9 ± 0.5 _{theo}	-	
R [data]	3.7 – 5.0	$7.2 \pm 0.3 \pm 0.0_{rad}$	-	
R [QCD]	5.0 − ∞	9.9 ± 0.2 _{theo}	-	
Sum (w/o KLOE)	$2m_{\pi}-\infty$	$690.8 \pm 3.9 \pm 1.9_{rad} \pm 0.7_{QCD}$	$710.1 \pm 5.0 \pm 0.7_{rad} \pm 2.8_{SU(2)}$	

MORE ON THE EM- τ DISCREPANCY

• $B_{\pi\pi}^{\tau}$ less sensitive to unfolding than $s_{\pi\pi}$ distribution

Source	$B^{ au}_{\pi\pi}$
BELLE	$0.2515 \pm 0.0004 \pm 0.0031$
ALEPH	$0.2547 \pm 0.0010 \pm 0.0009$
CLEO	$0.2542 \pm 0.0012 \pm 0.0042$
DELPHI	$0.2529 \pm 0.0020 \pm 0.0014$
OPAL	$0.2544 \pm 0.0017 \pm 0.0029$
au (ave)	0.2540 ± 0.0010
EM (+ IB)	0.2448 ± 0.0018

4.5 σ discrepancy between τ results and EM (+ IB) expectation!! • Similarly, isospin relations (+ IB corrections) for EM, $\tau 4\pi$ modes \Rightarrow EM expectations for $B[\tau \rightarrow 4\pi\nu_{\tau}]$

Mode	$\left[\Delta B_{4\pi}\right]_{\tau-e^+e^-}$	
$\pi^{-}3\pi^{0}\nu_{\tau}$	-0.0008 ± 0.0011	
$2\pi^{-}\pi^{+}\pi^{0}\nu_{\tau}$	0.0091 ± 0.0025	
$\pi^{-}\pi^{0}\nu_{\tau}$	0.0092 ± 0.0021	

•
$$\left[a_{\mu}^{exp} - a_{\mu}^{SM}\right]_{EM}^{no\ KLOE} \times 10^{10} = 27.5 \pm 8.6,$$

 $\left[a_{\mu}^{exp} - a_{\mu}^{SM}\right]_{\tau}^{no\ BELLE} \times 10^{10} = 12.2 \pm 9.3$

Source	$\left[10^{10} a_{\mu} - 11659000 ight]_{SM}$
DEHZ06 (e^+e^-)	$180.5\pm5.6^*$
DEHZ03/06 (au)	195.6 ± 6.8
BNL E821 (μ^{\pm})	208.0 ± 6.3

NOTES/COMMENTS/CAUTIONS

- DEHZ06 EM averages only CMD2 and SND $\rho_{EM}(s)$, neglects KLOE (NOT a conservative approach)
- pQCD from 1.8 GeV to J/ψ (how reliable?) (BES R(s)data \Rightarrow effect $< O(2-3) \times 10^{-10}$)
- consistency of EM $\pi^+\pi^-\pi^0\pi^0$ data not satisfactory, significant disagreement with IB-corrected τ expectations $(\tau \text{ yields } [a_\mu]^{had,LO}_{2\pi^0\pi^+\pi^-}$ higher by $(4.6 \pm 1.9) \times 10^{-10})$
- $\tau \pi \pi$ IB correction error underestimated (model dependence of integrated " ρ - ω interference")

OPE CONSTRAINTS AND THE EM- τ DISCREPANCY

- FESR background
 - $\Pi(s)$ (no kinematic singularities), spectral function $\rho(s)$, w(s) analytic in |s| < M, $M > s_0 \Rightarrow$

$$\int_0^{s_0} w(s) \,\rho(s) \,ds \,=\, -\frac{1}{2\pi} \oint_{|s|=s_0} w(s) \,\Pi(s) \,ds$$

FESR OPE features

- * V current correlators, $s_0 > \sim 2 \text{ GeV}^2 \Rightarrow \text{OPE}$ strongly dominated by D = 0
- * \Rightarrow dominant OPE input: $\alpha_s(M_Z)$ (from independent high-scale determinations, plus 4-loop running/matching)
- * good convergence of integrated D = 0 OPE series
- * " s_0 -stability tests" to check treatment of higher D contributions

WEIGHT CHOICES ETC.

FESR choices: use various pinched ($w(s = s_0) - 0$), nonnegative, monotonically decreasing w(y), $y = s/s_0$

- IB-corrected $\rho_{\tau}(s) > \rho_{EM}^{I=1}(s)$ in region of discrepancy
- \Rightarrow if τ data correct, (i) EM spectral integrals < OPE for all s_0 (non-negativity), (ii) slope wrt. s_0 < OPE (monotonicity)
- \Rightarrow if EM data correct, (i) τ spectral integrals > OPE for all s_0 , (ii) slope wrt. s_0 > OPE
- slope significantly less sensitive than norm'n to α_s

RESULTS (also true for other w(y) not shown above)

For high-scale average $\alpha_s(M_Z) = 0.1198 \pm 0.0020$ input

- magnitude and slope of τ spectral, OPE integrals agree for wide range of pinched, non-negative, monotonically decreasing w(y), s_0
- EM spectral integrals, slopes < OPE expectations for wide range of pinched, non-negative, monotonically decreasing w(y), s_0

RESULTS (SELECTED WEIGHTS)

• OPE vs.spectral integrals for w(y) = 1 - y

LEFT: EM, RIGHT: τ

• OPE vs.spectral integrals for $w_6(y) = 1 - \frac{6y}{5} + \frac{y^6}{5}$

LEFT: EM, RIGHT: τ

(one of more general "doubly-pinched" weight family, $\{w_N(y)\}$, with $6 \rightarrow N$, $5 \rightarrow N-1$)

• more on the EM normalization problem:

 $\alpha_s(M_Z)$ values required to fit EM and au spectral integrals for $s_0 \sim m_{ au}^2$

Weight	EM or $ au$	$\alpha_s(M_Z)$
1-y	EM	$0.1138^{+0.0030}_{-0.0035}$
w_{3}	EM	$0.1152_{-0.0021}^{+0.0019}$
w_{6}	EM	$0.1150^{+0.0022}_{-0.0026}$
1-y	au	$0.1212_{-0.0032}^{+0.0027}$
w_{3}	au	$0.1189^{+0.0018}_{-0.0021}$
w_6	au	$0.1195^{+0.0020}_{-0.0022}$

c.f. high-scale ave (w/out lattice): $\alpha_s(M_Z) = 0.1198 \pm 0.0020$

- more on the EM slope problem:
 - results for OPE vs. expt slope, S [*indep*: high scale $\alpha_s(M_Z)$ input (as above); *fit*: alternate $\alpha_s(M_Z)$ input from fit to EM spectral integral at $s_0 \sim 4 \text{ GeV}^2$]

Weight	S_{exp}	$\alpha_s(M_Z)$	S_{OPE}
1-y	$.00872 \pm .00026$	indep	$.00943 \pm .00008$
		fit	$.00934 \pm .00008$
w_6	$.00762 \pm .00017$	indep	$.00811 \pm .00009$
		fit	$.00805 \pm .00009$

- 2.6 (2.3) σ discrepancy for w(y) = 1 y with indep (fit) input, 2.5 (2.2) σ for $w_6(y)$
- no plausible shift of $\alpha_s(M_Z)$ cures slope problem from OPE side

• slope, normal'n problems both "cured" if EM V $\pi\pi$, 4π \rightarrow equivalent τ data ($w_6(y)$ eg. below: open circles are τ -modified EM spectral integrals)

Relative role of 2π , 4π in EM vs. τ OPE Constraints

- $\tau 2\pi$, 4π contributions to effective $s_0 = 2 GeV^2[m_{\tau}^2]$ EM spectral integral shifts

Weight	$\pi\pi$	4π
1-y	82% [36%]	18% [64%]
$w_6(y)$	87% [45%]	13% [55%]

- impact of replacing ONLY 4π part of ρ_{EM} with τ version (slope, $\alpha_s(M_Z)$ from fitted $\alpha_s(m_\tau)$)

Weight	$\alpha_s(M_Z)$	Slope (exp)	Slope (OPE)
1-y	0.1186	$.00936 \pm .00026$	$.00940 \pm .00008$
$w_6(y)$	0.1176	$.00795 \pm .00017$	$.00808 \pm .00009$

COMMENTS/CONCLUSIONS/OPINIONS

- pFESR tests, high-scale OPE input favor τ over EM data for V spectral function
- with τ input, SM prediction for a_{μ} in agreement with current E821 result
- NO even remotely plausible shift in $\alpha_s(M_Z)$ cures EM slope problem from OPE side
- HOWEVER, if new EM $\pi^+\pi^-\pi^0\pi^0$ data agrees with with τ expectation, EM slope, normalization low, but compatible within errors, with OPE

- τ slope, norm'n still OK if ALEPH $\tau \pi \pi \rightarrow$ BELLE $\pi \pi$ (but reduced central $\alpha_s(M_Z)$ fit value)
- a not-implausible near-term scenario:
 - BELLE $\tau \ \pi\pi \Rightarrow$ somewhat lower $[a_{\mu}]^{had,LO}_{\tau}$
 - new EM $\pi^+\pi^-\pi^0\pi^0 \sim \tau 4\pi$ expectations, R(s) data below J/ψ both raise $[a_\mu]_{EM}^{had,LO}$
 - BNL E969 a_{μ} proposal now crucial for interpretation
- WARNING: minimum plausible uncertainty in τ IB correction ~ 4 × 10⁻¹⁰ (> proposed BNL E969 accuracy) [KRM, C. Wolfe, PRD73 (2006) 013004]

- near-future new experimental input
 - analysis of additional KLOE data ($\sim 5 \times$ existing)
 - BABAR, BELLE radiative return $\sigma_{\pi\pi}$, BABAR K^+K^- , $\pi^+\pi^-\pi^0\pi^0$, $K\bar{K}\pi$, $\pi^+\pi^-3\pi^0$, $\pi^+\pi^-\pi^+\pi^-\pi^0$, $K\bar{K}\pi\pi$
 - CLEO-c R(s); BABAR, BELLE hadronic τ decay with much improved statistics, K/π separation
 - Novosibirsk VEPP-2000 upgrade (luminosity, systematics, $E_{CM}^{max} \rightarrow 2$ GeV, CMD-3, SND upgrades) \Rightarrow improved exclusive cross-sections (especially useful near threshold, above 1.38 GeV)
 - Beijing τ -charm upgrade

BACKUP SLIDES:

Pinched w(y) OPE/spectral integral ratios

LEFT: y, (1 - y); RIGHT: y^3 , $(1 - y)^2(1 + 2y)$

The Current $\tau~\pi\pi$ Situation

The $\sigma[\pi^+\pi^-\pi^0\pi^0]$ Situation

Comparison of BELLE $\tau \pi \pi$ with other sources

- BELLE $[a_{\mu}]_{\tau}^{\pi\pi} \times 10^{10}$, $(0.5 \text{GeV})^2 < s < m_{\tau}^2$: 459.8 ± $0.5 \pm 3.2 \pm 2.3_{IB}$ (Fujkikawa, Tau'06) [c.f. 464.0 ± $3.2 \pm 2.3_{IB}$ (ALEPH+CLEO), 450.2 ± $4.9 \pm 1.6_{rad}$ (CMD-2+KLOE)]
- τ -based determinations (no IB)

$s_{\pi\pi}$ [GeV ²]	BELLE	CLEO	ALEPH
.25 ightarrow .45	119.6 ± 0.4	123.6 ± 1.7	113.8 ± 3.5
.45 ightarrow .75	302.7 ± 0.3	298.5 ± 1.4	296.7 ± 2.6
.75 ightarrow 1.1	32.5 ± 0.1	29.1 ± 0.3	34.4 ± 0.7
1.1 ightarrow 1.7	6.1 ± 0.02	6.2 ± 0.1	6.9 ± 0.2
$1.7 \rightarrow 3.2$	0.81 ± 0.01	0.72 ± 0.03	0.78 ± 0.05