Enriched Xenon Observatory
for double beta decay

Jesse Wodin for the EXO collaboration
Enriched Xenon Observatory for double beta decay

D. Leonard, A. Piepke
Physics Dept, University of Alabama, Tuscaloosa AL

P. Vogel
Physics Dept Caltech, Pasadena CA

A. Bellerive, M. Bowcock, M. Dixit, I. Ekchtout, C. Hargrove, D. Sinclair, V. Strickland
Carleton University, Ottawa, Canada

W. Fairbank Jr., S. Jeng, K. Hall
Colorado State University, Fort Collins CO

M. Moe
Physics Dept UC Irvine, Irvine CA

D. Akimov, A. Burenkov, M. Danilov, A. Dolgolenko, A. Kovalenko, D. Kovalenko, G. Smirnov, V. Stekhanov
ITEP Moscow, Russia

J. Farine, D. Hallman, C. Virtue
Laurentian University, Canada

M. Hauger, F. Juget, L. Ounalli, D. Schenker, J-L. Vuilleumier, J-M. Vuilleumier, P. Weber
Physics Dept University of Neuchatel, Switzerland

SLAC, Menlo Park CA

R. DeVoe, P. Fierlinger, B. Flatt, G. Gratta, M. Green, F. LePort, M. Montero-Diez, R. Neilson, A. Pocar, J. Wodin
Physics Dept Stanford University, Stanford CA
Outline

- Double beta decay
- The EXO-200 experiment
- Ba\(^+\) tagging progress for EXO
Two types of $\beta\beta$ decay

- $\Delta L_e = 0$
- standard second order process observed in multiple isotopes

- Lepton number violation ($\Delta L_e = 2$)
- $m_\nu \neq 0$
- $\nu = \bar{\nu}$ (“Majorana neutrinos”)

$2\nu\beta\beta$

$0\nu\beta\beta$
ββ decay observables

Energy deposition from two electrons ($Q_{ββ} = 2457.9±0.4^* \text{ keV}$)

Daughter nucleus (ion)

* M. Redshaw, J., McDaniel, E. Wingfield and E.G. Myers (Florida State Precision Penning Trap), to be submitted to Phys. Rev C.
If $0\nu\beta\beta$ is due to light Majorana ν masses

$$\langle m_\nu \rangle^2 = \left(T_{1/2}^{0\nu\beta\beta} G^{0\nu\beta\beta}(E_0, Z) \left| M_{GT}^{0\nu\beta\beta} - \frac{g_V^2}{g_A^2} M_F^{0\nu\beta\beta} \right| \right)^{-1}$$

$M_F^{0\nu\beta\beta}$ and $M_{GT}^{0\nu\beta\beta}$ can be calculated within particular nuclear models

$G^{0\nu\beta\beta}$ a known phase space factor

$T_{1/2}^{0\nu\beta\beta}$ is the quantity to be measured

$$\langle m_\nu \rangle = \left| \sum_{i=1}^{3} U_{e,i}^2 m_i \varepsilon_i \right|$$ effective Majorana ν mass

($\varepsilon_i = \pm 1$ if CP is conserved)
Outline

• Double beta decay

• The EXO-200 experiment

• Ba\(^+\) tagging progress for EXO
The EXO-200 Experiment

EXO-200 is a LXe TPC with ionization and scintillation readout that employs 200 kg of enriched Xe (80% ^{136}Xe) as both a source and detector. EXO-200 has no $^{136}\text{Ba}^+$ identification.

Goals:

• look for $0\nu\beta\beta$ decay of ^{136}Xe with competitive sensitivity and test backgrounds of large LXe detector at ~2000 mwe depth
 \[T^{0\nu}_{1/2} > 6 \times 10^{25} \text{ y}, \text{current limit: } T^{0\nu}_{1/2} > 1.2 \times 10^{24} \text{ y} \]
• measure $2\nu\beta\beta$ decay of ^{136}Xe ($Q = 2457.8 \pm 0.4$) and measure lifetime (currently $T^{2\nu}_{1/2} > 1 \times 10^{22} \text{ y}$)
• test LXe technology and enrichment on a large scale
• test TPC components, light readout, radio-purity of materials, Xe handling and purification

Use (anti-)correlation between ionization and scintillation to improve energy resolution in LXe
Energy resolution improvement in LXe

Ionization alone:
\[\sigma(E)/E = 3.8\% \text{ @ } 570 \text{ keV} \]
or \[1.8\% \text{ @ } Q_{\beta\beta} \]

Ionization & Scintillation:
\[\sigma(E)/E = 3.0\% \text{ @ } 570 \text{ keV} \]
or \[1.4\% \text{ @ } Q_{\beta\beta} \]
(a factor of 2 better than the Gotthard TPC)

EXO-200 will collect 3-4 times as much scintillation...
Further improvement possible

Compilation of Xe resolution Results*

EXO ionization only †

EXO ionization + scintillation †

* Aprile, E. et al., NIM A 302 (1991) 177
Materials Qualification

Massive effort on material radio-purity qualification using:

- NAA
- Low background γ spectroscopy
- α-counting
- Radon counting
- High performance ICP-MS

At present, database include >100 materials

Material selection is based on full MC of detector. Impact of every screw inside Pb shielding is evaluated before acceptance
EXO-200 LXe Chamber

• 200 kg of LXe in thin vessel (ultra pure copper, 1.5 mm thick)

• 50 cm of ultra pure cryofluid, providing large thermal bath for uniform temperature (3M HFE-7000, hydrofluoroether C₃F₇OCH₃)

• double walled vacuum insulated cryostat (ultra pure copper, 2.5 cm thick)
200 kg ^{136}Xe and Natural Xe

- 200 kg Xe enriched at 80% in hand
- 200 kg natural Xe for testing purposes in hand
EXO-200 Detector

Class 100 clean room
The EXO-200 Cleanrooms

- Modular cleanrooms
- 7ft. thick concrete roof
- Milling machine for Xe chamber
- Soft wall clean room: pre-assembly and cleaning
- HFE storage dewar in shipping container
EXO-200 construction well underway

Cryostat on Pb cradle in cleanroom

Plumbing and feedthrough installation

Prototype chamber machining

Refrigerators in cleanroom 2
APD testing and construction

APD testing/calibration system

APD flex cable wiring

APD plane machining
First cryostat cooldown successful

- Used only 1 refrigerator (out of 4)
- No problems, good stability at 100°C (LXe temp.)
- Successful test of control systems

Next...
- Test with HFE
- Test with natural Xe in dummy chamber
- Test with natural Xe in real chamber
Muon flux at WIPP (~ 1700 m.w.e.):

\[4.77 \times 10^{-3} \text{ m}^{-2} \text{ s}^{-1}\]

\[(3.10 \times 10^{-3} \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}, \sim 15 \text{ m}^{-2} \text{ h}^{-1})\]

EXO 200 kg prototype is being assembled and commissioned at Stanford, then the six clean rooms will be shipped to WIPP (April 2007)
EXO-200 Majorana mass sensitivity

Assumptions:
1) 200kg of Xe enriched to 80% in 136Xe
2) $\sigma(E)/E = 1.4\%$ obtained in EXO R&D, Conti et al Phys Rev B 68 (2003) 054201
3) Low but finite radioactive background: 20 events/year in the $\pm 2\sigma$ interval centered around the 2.481MeV endpoint
4) Negligible background from $2\nu\beta\beta$ ($T_{1/2}^{2\nu} > 1 \times 10^{22}\text{yr}$; R. Bernabei et al. measurement)

<table>
<thead>
<tr>
<th>Case</th>
<th>Mass (ton)</th>
<th>Eff. (%)</th>
<th>Run Time (yr)</th>
<th>$\sigma_E/E @ 2.5\text{MeV}$ (%)</th>
<th>Radioactive Background (events)</th>
<th>$T_{1/2}^{0\nu}$ (yr, 90%CL)</th>
<th>Majorana mass (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype</td>
<td>0.2</td>
<td>70</td>
<td>2</td>
<td>1.6*</td>
<td>40</td>
<td>6.4$\times 10^{25}$</td>
<td>0.27†</td>
</tr>
</tbody>
</table>

If Klapdor’s observation is correct...

Central value $T_{1/2}^{(\text{Ge})} = 1.2^{+3}_{-0.5} \times 10^{25}$, $\pm 3\sigma$ range (0.24eV – 0.58eV) (Phys. Lett. B 586 (2004) 198-212)

In EXO-200, 2yr:
Worst case (QRPA, upper limit) 15 events on top of 40 events $\text{bkgd} \to 2\sigma$
Best case (NSM, lower limit) 162 events with 40 $\text{bkgd} \to 8.5\sigma$

† Rodin et al Phys Rev C 68 (2003) 044302
* Courier et al. Nucl Phys A 654 (1999) 973c
Assumptions:
1) 80% enrichment in ^{136}Xe
2) Intrinsic low background + Ba tagging eliminate all radioactive background
3) Energy res. only used to separate the 0ν from 2ν modes:
 Select 0ν events in a ±2σ interval centered around the 2.481MeV endpoint
4) \(2\nu\beta\beta \ T_{1/2} > 1 \times 10^{22}\text{yr} \) (Bernabei et al. measurement)

<table>
<thead>
<tr>
<th>Case</th>
<th>Mass (ton)</th>
<th>Eff. (%)</th>
<th>Run Time (yr)</th>
<th>$\sigma_{E}/E @ 2.5\text{MeV}$ (%)</th>
<th>2νββ Background (events)</th>
<th>$T_{1/2}^{0\nu}$ (yr, 90%CL)</th>
<th>Majorana mass (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservative</td>
<td>1</td>
<td>70</td>
<td>5</td>
<td>1.6*</td>
<td>0.5 (use 1)</td>
<td>2×10^{27}</td>
<td>50</td>
</tr>
<tr>
<td>Aggressive</td>
<td>10</td>
<td>70</td>
<td>10</td>
<td>1†</td>
<td>0.7 (use 1)</td>
<td>4.1×10^{28}</td>
<td>11</td>
</tr>
</tbody>
</table>

* $\sigma(E)/E = 1.4\%$ obtained in EXO R&D, Conti et al Phys Rev B 68 (2003) 054201
† $\sigma(E)/E = 1.0\%$ considered as an aggressive but realistic guess with large light collection area
Courier et al. Nucl Phys A 654 (1999) 973c

EXO Majorana mass sensitivity
Outline

• Double beta decay

• The EXO-200 experiment

• Ba^+ tagging progress for EXO
Xe offers a qualitatively new tool against background: $^{136}\text{Xe} \rightarrow ^{136}\text{Ba}^{++} \text{ e}^- \text{ e}^-$ final state can be identified using optical spectroscopy (M. Moe, Phys. Rev. C 44 (1991) 931)

- Ba^+ system well studied (Neuhauser, Hohenstatt, Toshek, Dehmelt 1980)
- Very specific signature
- Single ions can be detected from a photon rate of 10^7/s

- **Important additional constraint**
- **Drastic background reduction**
$^{136}\text{Ba}^+$ Tagging schematic

$^{136}\text{Ba}^+$ grabber

Buffer gas cooled quadrupole linear ion trap

Observe single ion here

CCD
Ba\(^+\) Linear Ion Trap Schematic

\[V_{RF}\cos(\Omega t) + U_{DC} \]

Trap operation

- Single Ba\(^+\) loaded at one end of trap
- Ba\(^+\) radially trapped by RF fields
- Ba\(^+\) transported by DC gradient
- Ba\(^+\) cooled by buffer gas collisions to trap minimum
- Ba\(^+\) excited by resonant lasers, and fluorescence observed by CCD
Ba$^+$ Linear Ion Trap System

~ 60 cm

Ba$^+$ lasers

Ion trap vacuum system

DPF 2006
Single Trapped \(\text{Ba}^+ \) in \(10^{-3} \) Torr He

- Can reliably trap single \(\text{Ba}^+ \) in He, Ar
- Lifetime of individual ion ~ hundreds of sec (only need ~ 10 sec for ID)
Ba+ tagging future plans

- Learn more about single ion trapping in different buffer gasses
 - Xe, Xe+He, etc...
- Currently working on multiple “tip” ideas
 - Cryo-tip (a lot of progress here!)
 - RIS tip
 - AFM tip
- Test ion grabbing/release “tips” with trap