The MEG Experiment

A Search for Lepton Flavor Violating Decays of Muons at PSI

T. Mori The University of Tokyo

Joint Meeting of Pacific Region Particle Physics Communities, October 30, Hawaii

Topics to Cover

 $\mu \rightarrow e \gamma$: Muon decay that violates lepton flavor

- ✓ Why so interesting?
- ✓ What limits the experiment?
- ✓ The MEG experiment
 - the beam
 - the positron spectrometer
 - the gamma ray detector
- ✓ Prospects

Why $\mu \rightarrow e\gamma$ so interesting?

Neutrino oscillation --> It must happen!
It is NEW PHYSICS!
Experiments are already sensitive to SUSY GUTs and SUSY seesaw.
Quark FV is generally contaminated by SM.
Looking for tiny deviations is not easy.

Lepton Flavor Violating Process

Lepton Flavor Violating Process

TeV scale new physics

Synergy w/ LHC & ILC

Lepton Flavor Violating Process

Expected Branching Ratios

Expected Branching Ratios

Clear 2-body kinematics

Use μ^+ to avoid capture inside stopping target

Background dominated by Accidental coincidence

- \rightarrow lower μ rate is better
- \rightarrow DC μ beam is best

"surface muon beam": 100% polarized

Good detector system Is essential

a simple arithmetic to achieve a 10⁻¹³-10⁻¹⁴ sensitivity

10^{13} muons / a year ~ 10^7 sec / efficiency ~ 0.1= ~ 10^7 muons / sec

High rate experiment

Two Types of Backgrounds

radiative decays ~ manageable

accidental overlaps dominant

radiative decays e⁺ annihilation in flight

lower µ rate is better → DC beam

Accidental coincidence of y and e⁺ is the main background

So we need:

High rate (~10⁷/sec) DC muon beam

Spectrometer that can manage high rate e⁺

 \bigcirc High resolution γ -ray detector

3 Elements that Enabled MEG

LXe scintillation γ -ray detector

COBRA magnet w/ graded B field

Most intensive DC muon beam (10⁸/sec)

The MEG experiment

Approved at Paul Scherrer Institut, Switzerland in 1999

Aiming at a sensitivity of 10⁻¹³, a possible future upgrade to 10⁻¹⁴ Detectors currently being built and installed

The Muon Beam

PSI Proton Cyclotron 590MeV, >1.8mA

πE5 area @PSI

Muon beam being tuned down to the target position

> 10⁸ muon stops /sec ~10mm spot size

The Positron Spectrometer

specially graded B field

The COBRA Spectrometer

compensation coils

LXe detector prototype

COBRA magnet

low B field at LXe detector

Drift Chamber Design

Z-direction measurement Vernier pattern is printed on cathode plane. Using the ratio of induced positive charge on each vernier pad, we can get the z-position measurement with high accuracy !!

opened-frame (Carbon fiber)

R-direction measurement

Cathode foil Aluminized Polyimide (¹250nm Al deposition on ¹12.5µm film)

sense (Ni/Cr, 25um, 0.5N) potential (Be/Cu, 50um, 1.1N) Half the DCs this week

Timing Counters

Two layers of scintillators:

- outer thick bars timing
- inner thin fibers redundant Z meas

Expe. application	size(cm)	Scinti.	PMT	L(att) cm	σ meas)	σ (exp)
G.D.Agostini	3x15x100	NE114	XP2020	200	120	60
T.Tanimori	3x20x150	SCSN38	R1332	180	140	110
T.Sugitate	4x3.5x100	SCSN23	R1828	200	50	53
R.T.Gile	5x10x280	BC408	XP2020	270	110	137
TOPAZ	4.2x13x400	BC412	R1828	300	210	240
R.Stroynowski	2x3x300	SCSN38	XP2020	180	180	420
Belle	4x6x255	BC408	R6680	250	90	143
MEG	4x4x90	BC404	R5924	270	38	43

Currently being installed inside the magnet

N₂ bag to protect PMTs from He

The LXe Gamma-ray Detector

LXe Gamma Ray Detector

- Scintillation only: High Light Yield, Fast Signal -- Good Resolutions
 - Measures Energy, Time and Position of Gamma Rays
- 3 ton (1000 liters) LXe with ~850 PMTs
- waveform digitizing to reject pile-up
- R&D issues: low temperature (165K), VUV light, H₂O purification

cryostat

Position measurement

Identification of Gamma ray Pile up

by position by timing 7000 0 6000 -20 5000 -40 annihilation in flight 4000 -60 3000 -80 -100 2000 W -120 1000 -140 0 5 z-ax15 -160 10 5 -180 0 ×10⁻⁶ 0.1 0.15 0.2 0.25 0.05 0.3 0.35 0.4 -5 2GHz waveform digitizer

Scintillation Light Attenuation by Water

Gas & liquid phase purification successfully tested: gas - metal getter (zirconium) ~0.5 l/h liquid - molecular sieves ~100 l/h

light attenuation > ~3m

Detector Performance Verified

100 liter Prototype Detector

Calibration & Monitoring of LXe Detector

 $\boldsymbol{\alpha}$ sources on thin wires

CW proton accelerator for ${}^{7}Li(p,\gamma){}^{8}Be$ monochromatic γ 17.6MeV $\Pi^{-}p \rightarrow \Pi^{0}n$, one γ tagged by Nal monochromatic γ 55MeV

Detailed background studies are underway

low energy gamma rays from the detector materials by Michel positrons

MEG Prospects

- Physics run to start next year.
 - Beam line commissioning to be completed this autumn.
 - Engineering run with positron spectrometer toward the end of this year.
 - LXe detector installation & commissioning this winter.
- Could exceed the MEGA limit after a few months running.
- Data taking takes ~2 years with a muon beam of a few x10⁷ /sec to reach 10⁻¹³ sensitivity.
- Our aim is to get a significant result before LHC.

