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Fermilab Tevatron

e 5 e
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| i iy, s o CM energy /s = 1.96 TeV.

e Two large, general-purpose detectors are
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CDF Il Detector

e The CDF [l detector contains a silicon
vertex detector, a central tracking system,
electromagnetic and hadronic calorimeters, and
muon chambers.

e The silicon vertex detector (bottom left) is
particularly important for high-efficiency b-

tagging.
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Lepton + Jets

e \We search in the “lepton + jets” channel, where one of the W quarks produced
decays hadronically and the other leptonically: tt — WWbb — bbqq'tv

e This channel produces the best combination of statistics (~ 30% of all ¢t events)
and sample purity.

e So far, the single best top mass measurements have all come from this channel.

e We look for events with 4 jets, a lepton, and missing energy from the neutrino.

q b
Principal backgrounds:
q _
e W + heavy flavor (bb, cc)

q
¢~ o W + light jets (mistag)

1%

e non-W QCD

q b
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Event Selection

Our selection requirements are as follows:

e Exactly one tight lepton with P >
20 GeV in the central region (|n| <
1), separated from all jets

e Exactly 4 tight jets with Er > 15
GeV in the central region (|n| < 2) 5, 1.

e No additional jets with Ep > 8
GeV in the central region (to
remove initial-state and final-state
radiation)

<+— 3 meters —»

e Missing Ep > 20 GeV Tracking View

e At least one jet tagged as being Sample tt — bbgq'lv event
from a b quark
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Jet Energy Systematics

e The uncertainty in measuring the jet energies is the single largest systematic in
making a top mass measurement.
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e We introduce the jet energy scale JES, a scale factor to the measured jet energies,
as an additional parameter to our likelihood. This allows us to use the information
in the W decay to determine the JES in an event.
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Method Overview

e Our method is built on calculating a likelihood for seeing the observed event by
integrating over the differential cross-section for ¢t events.

e For each event, we build a 2-D likelihood curve L(y|m¢, JES) representing the
probability of seeing the observed detector-level quantities () as a function of
the pole (“true”) top mass (m;) and the jet energy scale JES.

Sample 2-D likelihood curve e Then, we combine these curves by
I multiplying their likelihoods, reduce the

likelihood to a function of top mass by
] using the profile likelihood, and use the
peak of the curve to obtain our top
mass result and error.

3 e \We do not have results on data yet, so

160 170 t 180 190 this talk will focus on the method with
some Monte Carlo results.
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Integration Formula

We build our likelihood by integrating over the unknown quantities:

L(§m1, IBS) = r—rr—iges 30 [ S Ga)u(GIESIDIM (my, D) @)

perms
e T are the particle-level momenta, and ¢ are the detector-level momenta.

e /V is the normalization factor as a function of top mass, and A is the acceptance
factor (or “efficiency”) as a function of top mass and JES.

e f(z) are the quark/gluon parton distribution functions.

e w(y|T) are the transfer functions connecting the partons and jets, obtained from
Monte Carlo.

e )/ is the matrix element for ¢t production and decay. Our matrix element includes
both qq and gg as well as full spin correlations.

e O(7) is the particle-level phase space being integrated over.
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Integration Assumptions

e The full phase space ®(Z) has a total of 22 variables, far too many to practically
integrate over. Consequently, we make some assumptions: quark angles and
lepton momentum are perfectly measured, and all quarks are on mass shell,
except the leptonic b, which is massless.

e This leaves us with seven integration variables: M3, and M} on the hadronic
side, M7, and M} on the leptonic side, 5 = logg—‘; (the logarithm of the ratio
of the momenta of the two hadronic W decay products), and the Pr of the ¢t
system (two variables).

e However, these assumptions require changes to the distributions of M%V and M?
that we integrate over — they are no longer simply Breit-Wigners.

e To compensate, we build “effective propagators” by reconstructing Monte Carlo
events so that they do adhere to our assumptions and using those to build
distributions of M3, and M?.
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Effective Propagators

Delta Mt Delta Mt

4000 5000 6000 7000 8000 900 4000 5000 6000 7000 8000 9000
MW squared MW squared
Hadronic-side propagator Leptonic-side propagator

e The propagators are currently built in M7, and AM, (the difference between the

pole top mass and the event top mass). AM; is on the y-axis and M%V on the
X-axis.

e Note that the propagators are much broader than they would be if they were
merely Breit-Wigners.
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Transfer Functions

e The transfer functions w(y|¥) are a crucial component of any matrix-element
based analysis. They give the probability of seeing a reconstructed jet with
momentum g given a parton with momentum .

slice at 270 GeV/c  Shice at 200 GeVic

N i e The transfer functions are built by matching
g jets to partons in Monte Carlo events as a

_ function of the ratio of parton energy to jet

O—= momentum, fitted, and binned in 4 different

0 1 2 1 1 bins separately for b and light quarks.
P/E ratio PJE ratio

I~

Slice at 37.0 Gev/ic  Slice at 390 Gevic o At left: Sample fitted transfer functions for
N N central light quarks in various Pr bins.

j _ rfi e Dashed lines indicate fit extrapolation
LI I o LI o e I

below our momentum cutoff from event
selection.

F/E ratioe FiE riatio
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Integration Procedure

| Sample grid before sampling | | Sample grid after sampling |

e To integrate, we create a 1-D
grid equidistant in probability
for each integration variable,
combine the grids, and then

e e quasi-randomly sample the

RO P e S S o e resulting grid (similar to Monte

| ' Carlo integration).

Variable 3
o -
Variable 3

& .. =, 9 ¢ -
Yo v Lo o b
o

o
=M U L o v

'

Y
0

-

q,v

e \We sum over the possible jet-parton permutations with each permutation weighted
by the appropriate tagging probabilities. For example, if a tagged jet is matched
to a b parton, a weight of P(tag) is used. Conversely, if a b parton is matched
to an untagged jet, a weight of 1 — P(tag) is used. This is done for each jet in
the event.

e After being integrated, we run pseudoexperiments (PEs) on the resulting 2-D
likelihood curves to obtain a final mass measurement, expected error, and pull.
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Sample PE Likelihoods

e Sample likelihoods for a single

Total 2-D likelihood for PE 1 1-D JES likelihood at mt = 175 P E
JES Log L
F 1
2 60
N 0] e Top left: 2D likelihood
| il | : . : —
e "y e s ® Top right: Slice at my = 175
Top mass (GeV) JES
1-D mt likelihood at JES =0 2-D profile likelihood Gev for ]-_D JES reSU|tS
_LOgL Log L
60 60 .
w o] e Bottom left: Slice at JES = 0
2] N for 1-D mass results
0-160 “““ 170 180 190 e 70 180 180
Top mass (GeV) Top mass (GeV) o Bottom I’Ight L|ke||h00d curve

using profile likelihood

e Note how the profile likelihood curve is wider than the 1-D mass curve (essentially,
because the profile likelihood is along the diagonal rather than a horizontal line).
This reflects the effect of the JES systematics.
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Adding Background

e Since all events are [Effect of adding background on likelihood peak

treated as it events, s & «
adding in background ¥ _F
events will cause a % 4
shift in the likelihood & (F
= -6F
peak. 2 sF
B 105 Background
""E / (~17 events)
o o correct, we 12f
simpl subtract  -1aF Combined Signal
y - -ombine (~99 events)
out the expected -6 sig+bkgnd
background likelihood  -18
contribution, obtained 100 720 740 160 180 200 220 240

from Monte Carlo. m, (GeV)

e For this to work, we need to be able to calculate the background fraction for a
given event.

e To do this, we construct a discriminant variable ¢ which has different distributions
for signal and background but is independent of m; and JES.
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The Background Template

! Signal and background distributions | | Signal and background distributions |
g g g g
2 u @ C
$0.08— E [
s r . o 0.1
®0.07— B 175 GeV signal 5 L 175 GeV signal
o C L= QCD S L (mean=0.51 RMS=0.18)
20'06 - - W+ HF §°-°8 B Combined backgrounds
20.05F B W - light o [ (mean=0.39 RMS=0.15)
oY . L
© -
u=:0 oal 0.06 |
0.03F 0.0
0.02 i
C 0.02—
0.01— i
: B L Lol I#

oO

|
0.2 0.4 0.6 0.8 1 1.2 14 0.2 0.4 0.6 0.8 1 1.2 14
Discriminant variable Discriminant variable

e Left: Signal and background distributions normalized to expected signal (85%)
and background (15%) fractions, stacked histograms. We use this to calculate

the signal probability: fy,(q) = B(q)/(B(q) + S(q)).

e Right: Signal and background distributions normalized to 1, superimposed
histograms. This illustrates the different distributions for signal and background.
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Monte Carlo Results: Perfect Model Signal
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e Full simulation, 2000 PEs and 116

e Average bias = 0.46 4= 0.13 GeV
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Monte Carlo Results: Signal Only
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Monte Carlo Results: JES Systematics
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e To test that our method properly handles JES systematics, we prepare Monte
Carlo samples in which all of the jets have been shifted by +10. These plots
show the effect of the JES systematic shift for a fixed input mass of 175 GeV.

e Upper left: Output mass (using 2-D profile likelihood) vs. JES systematic
shift. This is completely flat, indicating that our 2-D likelihood method correctly
handles JES systematics.

e Upper right: Output JES (using 1-D JES-only likelihood) vs. JES systematic
shift.
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Monte Carlo Results: Signal 4+ Background
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Monte Carlo Results: Signal + Background, 175 Ge

| Best mass distribution for m, = 175 GeV | N;ean 173.9 ’Pseudoexperiment errors for m, = 175 GeV|
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Results Summary

Configuration | Average bias | Pull widths | Mass slope

Perfect model | 0.46 & 0.13 | ~ 1.05 0.991 £+ 0.012
Signal, no 7 -0.24 £ 0.17 | ~ 1.15 0.982 + 0.015
Signal only -1.24 £ 0.17 | ~ 1.2 0.971 £+ 0.017
Sig + bkgnd | -0.80 £ 0.12 | ~ 1.3 0.975 + 0.012

e As we can see, filtering out 7 events from our signal-only sample brings the bias

much closer to 0 and the pulls closer to 1.

e Hopefully when we finish our framework for dealing with 7, we will see a similar

Improvement.
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Conclusions

e The method has demonstrated a lot of success and prospects look good for a
quality result.

e Still working on some improvements which will hopefully improve our error and
reduce our pull width:

— Better treatment of events with 7

— Better handling of our error introduced by background events

— Allowance for the jet energy systematics to vary on a jet-by-jet basis (currently
we use a fixed systematic for all jets)

e Lots of systematics to be treated.

e Hope to have a good result soon!
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BACKUP SLIDES
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Building Effective Propagators

e How do we build these effective propagators? We take advantage of the way
Herwig handles the ¢ and W decay.

— First, Herwig decays the ¢ and W into massless decay products.
— Then, Herwig “fudges” the decay products by adding masses (conserving the
overall 4-momentum, of course) so that it can begin a parton shower.

e By taking the results of the first step, and then rotating these into our final
detector angles, we will get partons (“effective partons”) which adhere to our

Integration assumptions.

e Then we can build M3, and M} distributions from these partons to use as our
effective propagators.

e We also include terms for the angular resolution and jet mass effects.
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Event-by-Event Propagator Adjustment

o We a dJ u St t h e W| d t h Of t h e Mwsq comparison after mass effect (black), mass+large/small angle effects (blue/red)
hadronic propagator based on -
the kinematics of the event.

0.0008—
0.0006—
0.0004—

e The jet mass effects and .

0.0002—

AR RN R AR RN R RN AR RRR L)

angular resolution effects affect * T I T T e
the width of the propagator

differently for different events. .

We compute this uncertainty "

using the partial derivatives of ..

the W mass with respect to ™

these variables for the event.

0 (AR RN R RN R N RN R RN R LR RN RN RN RN N NN R R RN AR RN R RN
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

e The top shows the M7, propagator for an event for which the effect of the jet
mass is small, and the bottom shows a large jet mass effect.

e Black = jet mass effect only, red = jet mass effect + small angular resolution
effect, blue = jet mass effect + large angular resolution effect
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Transfer Function Validation

| Multiplied W mass likelihood curves | |Multiplied t mass likelihood curves|
-l [ -l
£ 18- £ [
WLk A
L 18—
16— i
L 16—
141 14
12l 12
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10 W mass i t mass
- 8_
IIIIIIIIIII IIIIIIIIIIIIIII _IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
20 40 60 80 100 120 140 160 80 100 120 140 160 180 200 220 240 260 280
W mass t mass

e To verify the transfer functions, we reconstruct the hadronic W and ¢ mass using
the transfer functions (but no other parts of our full integration).

e \We integrate over the parton momenta using the transfer functions and a prior
distribution of Py, and P; from Monte Carlo.

e The agreement shows that the transfer functions are working as desired.
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Permutation Weighting

e We employ the following procedure to weight the permutations in our integration.
First, we use the following parameterization of the tag efficiencies for b-jets, c-jets,
and light jets:

— P(taglb, Er,n) = (0.108 +-0.0175Er — 3.47-107*E% + 3.32- 107 °F3, — 1.58 -
1078E% +2.93 - 10711 E2)(1.05 — 0.517n + 1.457n — 1.2013 + 0.04667* +
0.08957°)

— P(tag|c, Ep,n) = 0.22 - P(tag|b, Ep,n)

— P(tag|l, Er,n) = (0.00355 —2.63-10"*Er+1.18-107°E2 —1.41-10""E2 +
7.53-1071°E% — 1.55 - 10712E2.)(0.821 + 0.452n + 0.437n* — 0.55513)

e Next, we have the a priori probabilities for a jet in a ¢t event, assuming W — ud

and W — cs each have a probability of 0.5: P(b) =1, P(c) = &, P(I) = 2

P(tag|b)-P(b)
P(tag)

e Hence, using Bayes' Theorem, P(bltag) =
P(tag|b)P(b) + P(tag|c)P(c) + P(tag|l)P(l).

where P(tag) =

e \We use these probabilities to weight accordingly.
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Expected Backgrounds

These backgrounds are from published results for 4 tight jets for 318 pb~!. These
are rescaled to 940 pb~!. We also rescale by a fraction of 0.648 to account for the
effect of our 0 loose jet cut.

Background 318 pb~! 940 pb~! 0 loose jets
non-W QCD 3.07 £ 1.06 | 9.08 £3.13 | 5.88 £+ 2.18
W + light (mistag) 227+ 045 | 6.71 £1.33 | 434 £1.00
diboson (WW, WZ, ZZ) | 0.39 + 0.08 | 1.15 4+ 0.24 | 0.75 + 0.18
Sum of above 2 2.66 £ 053 | 7806 £ 1.57 | 5.09 + 1.18
W bb 1.70 =2 0.79 | 5.03 2233 | 325+ 1.24
W ce, W ¢ 1.31 =063 | 3.87 =186 | 251 +£1.21
Single top 0.41 +£0.09 | 1.21 £0.27 | 0.78 = 0.20
Sum of above 3 3.43 +1.41 | 10.11 =+ 4.16 | 6.54 £ 2.80
Total Background 9016 £ 1.83 | 27.05 £541 | 17.51 £ 4.05
Expected top (m;=175) 42 + 5 124 + 15 82 + 10
Events observed 63 179 116

Total expected background fraction ~ 85%
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Background Discrimination Variable

e Our discriminant variable is called a “hybrid” variable, as it is constructed out of
a linear combination of three topological quantities:

— Aplanarity = %Ql, where ()1 is the smallest eigenvalue of the momentum
tensor

— Dpg, the minimum jet-jet AR weighted by the momentum ratio of the smaller
jet momentum to the lepton = ARgf;in mm(pT’j))/pT

— Hpy, the scalar sum of all jet Pr except the leading jet over the scalar
sum of all P, for jets lepton, and neutrino (using smaller solution) =

S \p§f>|/<zz 1P| + [Pt + [p% (min)|)

e While our inputs into our “hybrid” variable may have some m; or JES dependence
individually, by creating the proper linear combination we can ensure that the
total dependence cancels out.

e By varying the weights of the three inputs into our “hybrid” variable, we can
achieve these goals very well — we get excellent m; and JES stability and decent
S/B discrimination.
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Results: Signal Only,
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