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Fermilab Tevatron
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• The Fermilab Tevatron is a pp̄ collider with a
CM energy

√
s = 1.96 TeV.

• Two large, general-purpose detectors are
located at interaction points along the ring:
CDF and DØ.

• The top was first discovered here in 1995.

• Both detectors underwent major upgrades for
Run II beginning in 2001.

• The Tevatron maximum instantaneous
luminosity is ∼ 2.2 x 1032 cm−2 s−1.

• In Run II, the Tevatron has delivered almost 2
fb−1 integrated luminosity; our analysis is based
on 1 fb−1 of good data taken at CDF.
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CDF II Detector
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• The CDF II detector contains a silicon
vertex detector, a central tracking system,
electromagnetic and hadronic calorimeters, and
muon chambers.

• The silicon vertex detector (bottom left) is
particularly important for high-efficiency b-
tagging.
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Lepton + Jets

• We search in the “lepton + jets” channel, where one of the W quarks produced
decays hadronically and the other leptonically: tt̄ → WWbb̄ → bb̄qq̄′`ν

• This channel produces the best combination of statistics (∼ 30% of all tt̄ events)
and sample purity.

• So far, the single best top mass measurements have all come from this channel.

• We look for events with 4 jets, a lepton, and missing energy from the neutrino.
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Principal backgrounds:

• W + heavy flavor (bb̄, cc̄)

• W + light jets (mistag)

• non-W QCD
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Event Selection

Our selection requirements are as follows:

• Exactly one tight lepton with PT >
20 GeV in the central region (|η| <
1), separated from all jets

• Exactly 4 tight jets with ET > 15
GeV in the central region (|η| < 2)

• No additional jets with ET > 8
GeV in the central region (to
remove initial-state and final-state
radiation)

• Missing ET > 20 GeV

• At least one jet tagged as being
from a b quark

Sample tt̄ → bb̄qq̄′`ν event
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Jet Energy Systematics

• The uncertainty in measuring the jet energies is the single largest systematic in
making a top mass measurement.
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• We introduce the jet energy scale JES, a scale factor to the measured jet energies,
as an additional parameter to our likelihood. This allows us to use the information
in the W decay to determine the JES in an event.
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Method Overview

• Our method is built on calculating a likelihood for seeing the observed event by
integrating over the differential cross-section for tt̄ events.

• For each event, we build a 2-D likelihood curve L(~y|mt, JES) representing the
probability of seeing the observed detector-level quantities (~y) as a function of
the pole (“true”) top mass (mt) and the jet energy scale JES.

Sample 2−D likelihood curve
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• Then, we combine these curves by
multiplying their likelihoods, reduce the
likelihood to a function of top mass by
using the profile likelihood, and use the
peak of the curve to obtain our top
mass result and error.

• We do not have results on data yet, so
this talk will focus on the method with
some Monte Carlo results.
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Integration Formula

We build our likelihood by integrating over the unknown quantities:

L(~y|mt, JES) =
1

N(mt)A(mt, JES)

∑
perms

∫
f(z1)f(z2)w(~y·JES|~x)|M(mt, ~x)|2dΦ(~x)

• ~x are the particle-level momenta, and ~y are the detector-level momenta.

• N is the normalization factor as a function of top mass, and A is the acceptance
factor (or “efficiency”) as a function of top mass and JES.

• f(z) are the quark/gluon parton distribution functions.

• w(~y|~x) are the transfer functions connecting the partons and jets, obtained from
Monte Carlo.

• M is the matrix element for tt̄ production and decay. Our matrix element includes
both qq̄ and gg as well as full spin correlations.

• Φ(~x) is the particle-level phase space being integrated over.
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Integration Assumptions

• The full phase space Φ(~x) has a total of 22 variables, far too many to practically
integrate over. Consequently, we make some assumptions: quark angles and
lepton momentum are perfectly measured, and all quarks are on mass shell,
except the leptonic b, which is massless.

• This leaves us with seven integration variables: M2
W and M2

t on the hadronic
side, M2

W and M2
t on the leptonic side, β = log pq

pq̄
(the logarithm of the ratio

of the momenta of the two hadronic W decay products), and the PT of the tt̄
system (two variables).

• However, these assumptions require changes to the distributions of M2
W and M2

t

that we integrate over – they are no longer simply Breit-Wigners.

• To compensate, we build “effective propagators” by reconstructing Monte Carlo
events so that they do adhere to our assumptions and using those to build
distributions of M2

W and M2
t .

Paul Lujan – DPF 2006 – October 31, 2006 8



Effective Propagators
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• The propagators are currently built in M2
W and ∆Mt (the difference between the

pole top mass and the event top mass). ∆Mt is on the y-axis and M2
W on the

x-axis.

• Note that the propagators are much broader than they would be if they were
merely Breit-Wigners.
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Normalization and Acceptance

In order to obtain sensible results, we must ensure that the likelihood is
normalized, and ensure that the effect of our selection cuts is taken into account.
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• Left: Normalization, obtained by imposing the condition
∫

P (~y, mt)d~y = 1 for
all mt. Analytically, the normalization comes out proportional to σtt̄ · Γ2

t/m2
t .

• Right: Acceptance, obtained by computing the number of events from Monte
Carlo samples passing our selection cuts as a function of mt and JES.
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Transfer Functions

• The transfer functions w(~y|~x) are a crucial component of any matrix-element
based analysis. They give the probability of seeing a reconstructed jet with
momentum ~y given a parton with momentum ~x.

• The transfer functions are built by matching
jets to partons in Monte Carlo events as a
function of the ratio of parton energy to jet
momentum, fitted, and binned in 4 different
η bins separately for b and light quarks.

• At left: Sample fitted transfer functions for
central light quarks in various PT bins.

• Dashed lines indicate fit extrapolation
below our momentum cutoff from event
selection.
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Integration Procedure
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• To integrate, we create a 1-D
grid equidistant in probability
for each integration variable,
combine the grids, and then
quasi-randomly sample the
resulting grid (similar to Monte
Carlo integration).

• We sum over the possible jet-parton permutations with each permutation weighted
by the appropriate tagging probabilities. For example, if a tagged jet is matched
to a b parton, a weight of P (tag) is used. Conversely, if a b parton is matched
to an untagged jet, a weight of 1− P (tag) is used. This is done for each jet in
the event.

• After being integrated, we run pseudoexperiments (PEs) on the resulting 2-D
likelihood curves to obtain a final mass measurement, expected error, and pull.
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Sample 2D Likelihoods
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• Sample 2-D likelihoods for
single events

• mt is on the x-axis, and JES is
on the y-axis

• The color scale is calibrated
so red is the peak of the
curve, and blue is 5 units of
log-likelihood below the peak
(black is anything below that)

• Top 3 rows: signal; 4th row:
W + bb̄; 5th row: W + light;
bottom row: QCD (our three
main backgrounds)
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Sample PE Likelihoods

Total 2−D likelihood for PE 1
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• Sample likelihoods for a single
PE

• Top left: 2D likelihood

• Top right: Slice at mt = 175
GeV for 1-D JES results

• Bottom left: Slice at JES = 0
for 1-D mass results

• Bottom right: Likelihood curve
using profile likelihood

• Note how the profile likelihood curve is wider than the 1-D mass curve (essentially,
because the profile likelihood is along the diagonal rather than a horizontal line).
This reflects the effect of the JES systematics.
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Adding Background
• Since all events are

treated as tt̄ events,
adding in background
events will cause a
shift in the likelihood
peak.

• To correct, we
simply subtract
out the expected
background likelihood
contribution, obtained
from Monte Carlo.  (GeV)tm
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Effect of adding background on likelihood peak

• For this to work, we need to be able to calculate the background fraction for a
given event.

• To do this, we construct a discriminant variable q which has different distributions
for signal and background but is independent of mt and JES.
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The Background Template
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Signal and background distributions

• Left: Signal and background distributions normalized to expected signal (85%)
and background (15%) fractions, stacked histograms. We use this to calculate
the signal probability: fbg(q) = B(q)/(B(q) + S(q)).

• Right: Signal and background distributions normalized to 1, superimposed
histograms. This illustrates the different distributions for signal and background.
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Monte Carlo Results: Perfect Model Signal
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• Full simulation, 2000 PEs and 116

events/PE, signal only, 2-D profile

likelihood

• Only perfectly modeled events are

considered: events with poor jet-parton

matching and W → τ are rejected

• Average bias = 0.46 ± 0.13 GeV

• Pull width ∼ 1.05

• Slope of mass fit line = 0.991 ± 0.012
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Monte Carlo Results: Signal Only
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• Full simulation, 2000 PEs and 116

events/PE, signal only, 2-D profile

likelihood

• Average bias = -1.24 ± 0.17 GeV

• Pull width ∼ 1.2

• Slope of mass fit line = 0.971 ± 0.017
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Monte Carlo Results: JES Systematics
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• To test that our method properly handles JES systematics, we prepare Monte
Carlo samples in which all of the jets have been shifted by ±1σ. These plots
show the effect of the JES systematic shift for a fixed input mass of 175 GeV.

• Upper left: Output mass (using 2-D profile likelihood) vs. JES systematic
shift. This is completely flat, indicating that our 2-D likelihood method correctly
handles JES systematics.

• Upper right: Output JES (using 1-D JES-only likelihood) vs. JES systematic
shift.
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Monte Carlo Results: Signal + Background
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• Full simulation, 4000 PEs and 116

events/PE, 85% signal + 15% background

(fully realistic), 2-D profile likelihood

• Average bias = -0.80 ± 0.12 GeV

• Pull width ∼ 1.3

• Slope of mass fit line = 0.975 ± 0.012
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Monte Carlo Results: Signal + Background, 175 GeV
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• Full simulation, 4000 PEs and 116

events/PE, 85% signal + 15% background

(fully realistic), 2-D profile likelihood

• Top left: best mass distribution for PEs

at mt = 175

• Top right: expected error distribution for

PEs at mt = 175

• Bottom left: pull distribution for PEs at

mt = 175
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Results Summary

Configuration Average bias Pull widths Mass slope
Perfect model 0.46 ± 0.13 ∼ 1.05 0.991 ± 0.012
Signal, no τ -0.24 ± 0.17 ∼ 1.15 0.982 ± 0.015
Signal only -1.24 ± 0.17 ∼ 1.2 0.971 ± 0.017
Sig + bkgnd -0.80 ± 0.12 ∼ 1.3 0.975 ± 0.012

• As we can see, filtering out τ events from our signal-only sample brings the bias
much closer to 0 and the pulls closer to 1.

• Hopefully when we finish our framework for dealing with τ , we will see a similar
improvement.
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Conclusions

• The method has demonstrated a lot of success and prospects look good for a
quality result.

• Still working on some improvements which will hopefully improve our error and
reduce our pull width:

– Better treatment of events with τ
– Better handling of our error introduced by background events
– Allowance for the jet energy systematics to vary on a jet-by-jet basis (currently

we use a fixed systematic for all jets)

• Lots of systematics to be treated.

• Hope to have a good result soon!
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BACKUP SLIDES
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Building Effective Propagators

• How do we build these effective propagators? We take advantage of the way
Herwig handles the t and W decay.

– First, Herwig decays the t and W into massless decay products.
– Then, Herwig “fudges” the decay products by adding masses (conserving the

overall 4-momentum, of course) so that it can begin a parton shower.

• By taking the results of the first step, and then rotating these into our final
detector angles, we will get partons (“effective partons”) which adhere to our
integration assumptions.

• Then we can build M2
W and M2

t distributions from these partons to use as our
effective propagators.

• We also include terms for the angular resolution and jet mass effects.
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Event-by-Event Propagator Adjustment

• We adjust the width of the
hadronic propagator based on
the kinematics of the event.

• The jet mass effects and
angular resolution effects affect
the width of the propagator
differently for different events.
We compute this uncertainty
using the partial derivatives of
the W mass with respect to
these variables for the event.

Mwsq comparison after mass effect (black), mass+large/small angle effects (blue/red)
Mwsq convoluted for predictor value = 0.360178
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Mwsq convoluted for predictor value = 5.478295
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• The top shows the M2
W propagator for an event for which the effect of the jet

mass is small, and the bottom shows a large jet mass effect.

• Black = jet mass effect only, red = jet mass effect + small angular resolution
effect, blue = jet mass effect + large angular resolution effect
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Transfer Function Validation

W mass
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• To verify the transfer functions, we reconstruct the hadronic W and t mass using
the transfer functions (but no other parts of our full integration).

• We integrate over the parton momenta using the transfer functions and a prior
distribution of ~PW and ~Pt from Monte Carlo.

• The agreement shows that the transfer functions are working as desired.
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Permutation Weighting

• We employ the following procedure to weight the permutations in our integration.
First, we use the following parameterization of the tag efficiencies for b-jets, c-jets,
and light jets:

– P (tag|b, ET , η) = (0.108+0.0175ET − 3.47 · 10−4E2
T +3.32 · 10−6E3

T − 1.58 ·
10−8E4

T + 2.93 · 10−11E5
T )(1.05 − 0.517η + 1.457η2 − 1.20η3 + 0.0466η4 +

0.0895η5)
– P (tag|c, ET , η) = 0.22 · P (tag|b, ET , η)
– P (tag|l, ET , η) = (0.00355−2.63 ·10−4ET +1.18 ·10−5E2

T −1.41 ·10−7E3
T +

7.53 · 10−10E4
T − 1.55 · 10−12E5

T )(0.821 + 0.452η + 0.437η2 − 0.555η3)

• Next, we have the a priori probabilities for a jet in a tt̄ event, assuming W → ud
and W → cs each have a probability of 0.5: P (b) = 1

2, P (c) = 1
8, P (l) = 3

8

• Hence, using Bayes’ Theorem, P (b|tag) = P (tag|b)·P (b)
P (tag) , where P (tag) =

P (tag|b)P (b) + P (tag|c)P (c) + P (tag|l)P (l).

• We use these probabilities to weight accordingly.
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Expected Backgrounds

These backgrounds are from published results for 4 tight jets for 318 pb−1. These
are rescaled to 940 pb−1. We also rescale by a fraction of 0.648 to account for the
effect of our 0 loose jet cut.

Background 318 pb−1 940 pb−1 0 loose jets
non-W QCD 3.07 ± 1.06 9.08 ± 3.13 5.88 ± 2.18

W + light (mistag) 2.27 ± 0.45 6.71 ± 1.33 4.34 ± 1.00
diboson (WW, WZ, ZZ) 0.39 ± 0.08 1.15 ± 0.24 0.75 ± 0.18
Sum of above 2 2.66 ± 0.53 7.86 ± 1.57 5.09 ± 1.18

W bb̄ 1.70 ± 0.79 5.03 ± 2.33 3.25 ± 1.24
W cc̄, W c 1.31 ± 0.63 3.87 ± 1.86 2.51 ± 1.21
Single top 0.41 ± 0.09 1.21 ± 0.27 0.78 ± 0.20

Sum of above 3 3.43 ± 1.41 10.11 ± 4.16 6.54 ± 2.80

Total Background 9.16 ± 1.83 27.05 ± 5.41 17.51 ± 4.05

Expected top (mt=175) 42 ± 5 124 ± 15 82 ± 10
Events observed 63 179 116

Total expected background fraction ∼ 85%
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Background Discrimination Variable

• Our discriminant variable is called a “hybrid” variable, as it is constructed out of
a linear combination of three topological quantities:

– Aplanarity = 3
2Q1, where Q1 is the smallest eigenvalue of the momentum

tensor
– DR, the minimum jet-jet ∆R weighted by the momentum ratio of the smaller

jet momentum to the lepton = ∆Rmin
ij ·min(p(i,j)

T )/p`
T

– HTZ, the scalar sum of all jet PT except the leading jet over the scalar
sum of all Pz for jets, lepton, and neutrino (using smaller solution) =∑4

i=2 |p
(i)
T |/(

∑4
i=1 |p

(i)
z |+ |p`

z|+ |pν
z(min)|)

• While our inputs into our “hybrid” variable may have some mt or JES dependence
individually, by creating the proper linear combination we can ensure that the
total dependence cancels out.

• By varying the weights of the three inputs into our “hybrid” variable, we can
achieve these goals very well – we get excellent mt and JES stability and decent
S/B discrimination.
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Results: Signal Only, No τs
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 / ndf 2χ  8.939 / 4
Prob   0.06265
Constant  0.1617± -0.2359 

 / ndf 2χ  8.939 / 4
Prob   0.06265
Constant  0.1617± -0.2359 

• Full simulation, 2000 PEs and 116

events/PE, signal only, 2-D profile

likelihood

• Events with W → τ are rejected

• Average bias = -0.24 ± 0.17 GeV

• Pull width = 1.15 ± 0.01

• Slope of mass fit line = 0.982 ± 0.015
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