

Top Quark Mass Measurement with a Matrix-Element Method in the Dilepton Channel

Bodhitha Jayatilaka Duke University

On Behalf of the CDF Collaboration

DPF+JPS 2006 Meeting Honolulu, Hawaii

November 1,2006

Why measure the top quark mass?

- Top mass is a fundamental parameter in the Standard Model (SM)
- Enters into radiative corrections

- Constrains (along with other precision measurements such as M_W) SM Higgs mass
- Also constraint on SUSY models
 - Some require a heavy top
 - Place limits on MSSM Higgs mass(es)

Top quark decay: the dilepton channel

- Top quarks are primarily pair produced at Tevatron
 - Decay channel is defined by W decay modes
- Both Ws decay leptonically in ~5% of all decays
 - 2 leptons (e or μ), 2 jets (from *b*-quarks), large missing E_T from Vs

Advantages

- Clean: little background without need for *b*-tagging
- Least jets of any channel (less reliant on JES, less ambiguity in jets)

Disadvantages

- Low statistics
- 2 vs escape undetected- underconstrained system

Backgrounds

- Drell-Yan + jets (DY)
- Diboson + jets
- Mis-ID leptons ("fakes")

Measuring M_{top} in the dilepton channel

Important measurement

- Contributes to overall knowledge of top mass
- Verify that we are measuring SM top
- If results across channels inconsistent, new physics might be in sample

Difficult channel to work in

- Low statistics
- Two neutrinos escape undetected
- Only one missing transverse energy measurement
 - Kinematically under-constrained
- Forced to make assumptions and integrate

The Tevatron and CDF detector

- Record inst. lumi. of 2.3×10^{32} cm⁻² s⁻¹
- Nearly 2 fb⁻¹ delivered to-date
 - CDF has I.6 fb⁻¹ recorded
- Expect 4-8 fb⁻¹ for Run II

The Tevatron and CDF detector

- Record inst. lumi. of 2.3×10^{32} cm⁻² s⁻¹
- Nearly 2 fb⁻¹ delivered to-date
 - CDF has I.6 fb⁻¹ recorded
- Expect 4-8 fb⁻¹ for Run II

The matrix element method

• Use differential cross-section to calculate probability of event coming from M_{top}

Formulate differential cross-section using LO matrix element and transfer functions

$$\frac{d\sigma(M_t)}{d\mathbf{x}} = \int d\Phi |\mathcal{M}_{t\bar{t}}(p_i; M_t)|^2 \prod W(p_i, \mathbf{x}) f_{PDF}(q_1) f_{PDF}(q_2)$$

- Transfer functions link measured quantities \mathbf{x} to parton-level ones, p_i
 - Jet energy-parton energy
 - $tt p_T$ measured recoil
- Perform integrals over unknown quantities (8)
 - Variable change from neutrino momenta to inv. masses
- Simplifying assumptions made for tractability
 - e.g. lepton momenta and jet angles perfectly measured

Integrals still take 2-3 hours per event!

Incorporating backgrounds

• Final event probability is weighted sum of signal and background probabilities

 $P(\mathbf{x}|M_t) = P_s(\mathbf{x}|M_t)p_s + P_{bg_1}(\mathbf{x})p_{bg_1} + P_{bg_2}(\mathbf{x})p_{bg_2} + \cdots$

- Weights are determined from expected fractional contribution of each source
- Form differential cross-sections as in signal for each modeled background process
 - Difficult to determined closed-form expression for backgrounds: use ME-based generators instead (e.g. ALPGEN)

7

- Example: DY+2 jets
- Modeled backgrounds
 - DY+jets
 - WW+jets
 - W+3 jets (for fakes)
- Product of per-event prob. densities give likelihood for sample

Dataset used

- I fb⁻¹ of data collected up to March 2006 at CDF
- Basic selection: 2 high-p_T (>20 GeV/c) leptons, 2 high-E_T (>15 GeV) jets, large ∉_T (>25 GeV)
- Additional cuts to help reduce background
 - Elevate \mathbb{E}_T requirement when $m_{\mathbb{H}}$ is close to Z mass
 - Require scalar sum of energies in event, H_T >200 GeV

Observed (1.0 fb ⁻¹)	78
Total	77.1
Ζ→ττ	2.2
WW/WZ	5.1
Fakes	8.7
Z→ee/µµ	10.9
tt (M_t =175 GeV/ c^2 , σ =6.7pb)	50.2
Source	N _{evs}

Tests: signal only

Response

- Linear
- Unbiased

Pull Widths

- Flat
- ~1.0 for parton-level events (assumptions held)
- ~1.16 for fully simulated events

Tests: signal+background

- Including BG prob. improves uncertainty by ~10% over only signal prob.
- Corrections applied for slope, offset and pull width
 - Unbiased with correctly estimated error after corrections

Tests: signal+background

After corrections

After corrections

- Including BG prob. improves uncertainty by ~10% over only signal prob.
- Corrections applied for slope, offset and pull width
 - Unbiased with correctly estimated error after corrections

Uncertainties

Statistical Uncertainty

- Expected for M_{top} =175 GeV/ c^2 , σ = 5.0 GeV/ c^2
- Expected for M_{top} =165 GeV/ c^2 , σ = 4.2 GeV/ c^2

Systematic Uncertainty

Source	$\Delta M_{top} (\text{GeV}/c^2)$
Jet Energy Scale	3.5
Generator	0.9
Method	0.6
Sample Composition	0.7
Background Statistics	0.7
Background Modeling	0.2
FSR	0.3
ISR	0.3
PDFs	0.8
Total	3.9

Improves with better methods and/or more data

Improves with more CPU

Uncertainties

Statistical Uncertainty

- Expected for M_{top} =175 GeV/ c^2 , σ = 5.0 GeV/ c^2
- Expected for M_{top} =165 GeV/ c^2 , σ = 4.2 GeV/ c^2

Systematic Uncertainty

Source	$\Delta M_{top} (GeV/c^2)$	
Jet Energy Scale	3.5	Working on using Z→bb to improve
Generator	0.9	
Method	0.6	
Sample Composition	0.7	
Background Statistics	0.7	
Background Modeling	0.2	
FSR	0.3	Improves with
ISR	0.3	better methods
PDFs	0.8	and/or more data
Total	3.9	Improves with

Uncertainties

Statistical Uncertainty

- Expected for M_{top} =175 GeV/ c^2 , σ = 5.0 GeV/ c^2
- Expected for M_{top} =165 GeV/ c^2 , σ = 4.2 GeV/ c^2

Systematic Uncertainty

Source	ΔM_{top} (GeV/ c^2)	
Jet Energy Scale	3.5	
Generator	0.9	Driven by small sample of (data-based) "fake" lepton events
Method	0.6	
Sample Composition	0.7	
Background Statistics	0.7	
Background Modeling	0.2	
FSR	0.3	
ISR	0.3	
PDFs	0.8	and/or more data
Total	3.9	Improves with

Result

$M_{top} = 164.5 \pm 3.9(stat.) \pm 3.9(syst.) GeV/c^2$

- Single most precise dilepton top mass measurement to-date
- With no improvements to method, projected stat. error with 4 fb⁻¹ is 2.5 GeV/ c^2

- The "evolving" top mass in three different channels
 - Best measurement in each channel at CDF for 3 data-taking periods shown
- Is the dilepton channel lower than the others?
 - Deviation not inconsistent with fluctuation
 - Trend is intriguing
- Other ways to probe with data at hand

Cross-checks

Lepton Flavor

- Measure mass separately for ee, eµ and µµ events
- Results consistent

Cross-checks

Lepton Flavor

- Measure mass separately for ee, eµ and µµ events
- Results consistent

B-tagging

- Use secondary vertex tagging
 - Increases S:B to ~20:1
 - Retains ~60% of signal events
- See if measurement consistent with full sample

Cross-checks

Lepton Flavor

- Measure mass separately for ee, eµ and µµ events
- Results consistent

B-tagging

- Use secondary vertex tagging
 - Increases S:B to ~20:1
 - Retains ~60% of signal events
- See if measurement consistent with full sample

 $M_{top} = 167.3 \pm 4.6 (stat.) \pm 3.8 (syst.) GeV/c^2$

Conclusion

- Matrix element based measurement of top quark mass in dilepton channel
 - Single best measurement in this channel

 $M_{top} = 164.5 \pm 3.9(stat.) \pm 3.9(syst.) GeV/c^2$

- Result with smaller (340 pb⁻¹) dataset published as PRL and PRD
- Plan to publish I fb⁻¹ in near future
- Dilepton top mass will be systematics dominated by end of Run II
 - New set of challenges

Backup Slides

Data event curves

