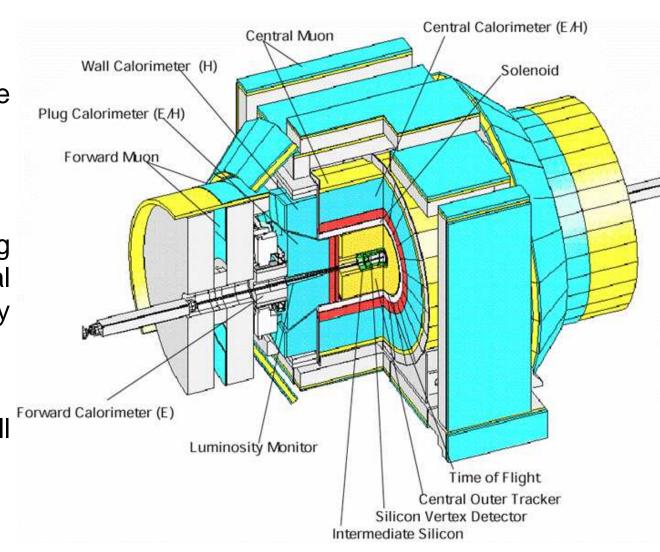


MEASUREMENT OF THE $t\bar{t}$ PRODUCTION CROSS SECTION IN THE LEPTON + JETS CHANNEL USING JET PROBABILITY AT CDF

Phys. Rev. D. 74, 072006

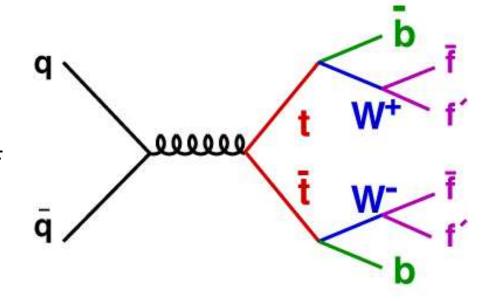
Enrique Palencia, Instituto de Física de Cantabria for the CDF Collaboration


DPF+JPS Meeting, October 29 - November 3, 2006

Outline

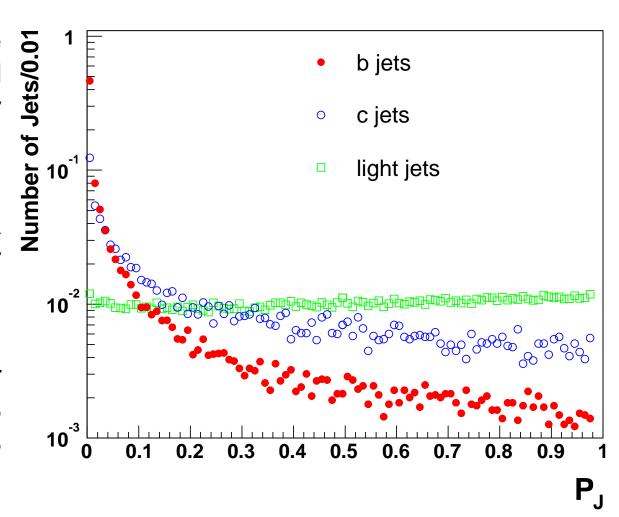
- Jet Probability Tagging Algorithm
 - Description of the algorithm
 - Efficiency
 - Mistag Rate
- tt̄ Cross Section Measurement
 - Data sample and event selection
 - Acceptance and background estimate
 - Results
- Summary

The CDF Detector


- General-purpose particle detector. Cylindrical simmetry
- 3 subsystems: tracking (inside a 1.4 T solenoidal magnetic field), calorimetry and muons systems
- For top physics, the full detector is needed

Jet Probability... Why?

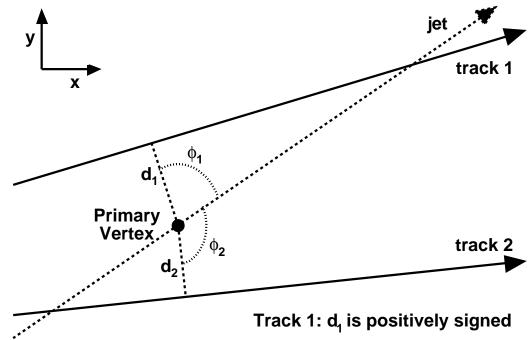
- ... heavy flavor (HF) tagging?
 - ♦ Top signal has 2 b's


 - \Rightarrow S/B greatly increased

- ... Jet Probability?
 - ♦ Provides a continuous variable ⇒ more flexible way to understand the composition of the tagged sample
 - Can be tuned/optimized differently for other kind of analyses
 - \diamondsuit Potentially, this method can be used to statistically separate b and c heavy flavor contributions

Jet Probability Algorithm (I)

- HF hadrons have long lifetime ⇒ displaced vertices (and tracks) from the primary vertex
- Physically, probability for a jet to come from the primary vertex
- Uniform for light quark or gluon jets. Peaks at 0 for jets containing displaced tracks from HF decays

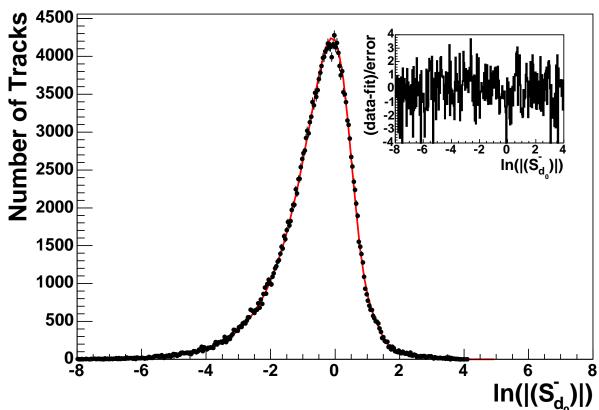


• For the analysis, $P_J < 1\%$ and $P_J < 5\%$

Jet Probability Algorithm (II)

• Signed impact parameter: $d_0 > 0$ if point of closest approach to the primary vertex lies in the same direction as the jet direction ($\cos \phi > 0$)

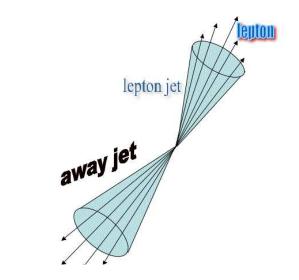
 + (-) Jet Probability: only tracks with positive (negative) impact parameter

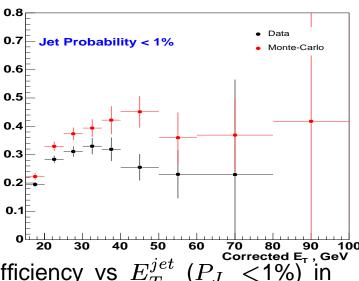

Track 2: d, is negatively signed

• Track impact parameter significance: $S = D/\sigma_D$

Jet Probability Algorithm (III)

- Fit the distribution of the track impact parameter significance to obtain a resolution function R(S) (different for data and MC)
- Negative side of R(S) used to determine the probability $(P_{tr}(S_0))$ that the impact parameter significance (S_0) of a given track is due to the detector resolution
- Probability that a jet is consistent with a zero lifetime hypothesis:

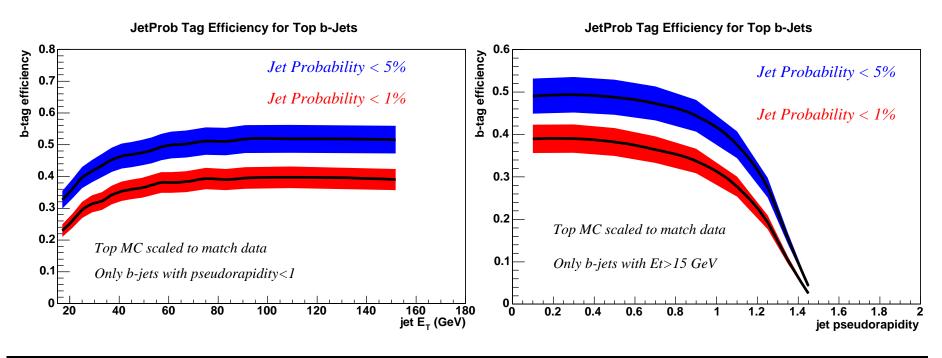

$$\prod_{l=1}^{N_{tr}} P_{tr} \times \sum_{k=0}^{N_{tr}-1} \frac{(-\ln \prod_{l=1}^{N_{tr}} P_{tr})^k}{k!}$$



Jet Probability Efficiency

- Measured using an 8 GeV inclusive electron data sample (it is enriched with HF due to the semiloptenic B decays)
- Double tag method: as heavy flavor quarks are mostly produced in pairs, heavy flavor content in one jet is enhanced requiring that the "other" jet (away jet) is tagged
- Efficiencies to tag a HF jet with $E_T > 15$ GeV and 318 pb^{-1}

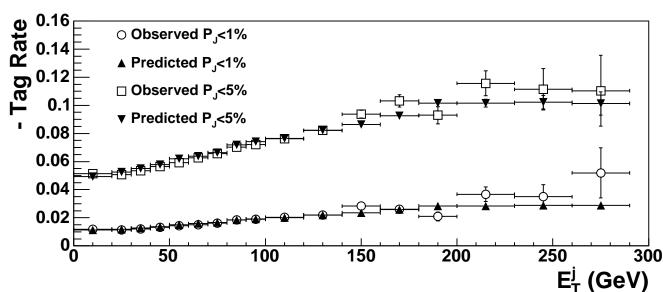
	$P_{J} < 1\%$	$P_{J} < 5\%$
ϵ^{data}	0.258 ± 0.018 0.316 ± 0.021	0.334 ± 0.026
ϵ^{MC}	0.316 ± 0.021	0.392 ± 0.026
Scale Factor (SF)	0.817 ± 0.070	0.852 ± 0.072



Efficiency vs E_T^{jet} (P_J <1%) in

Jet Probability Efficiency in $tar{t}$ Events

b-tagging efficiency (tag rate × SF) per jet in a top Monte Carlo sample.
 Bands represent the systematic error due to the scale factor.



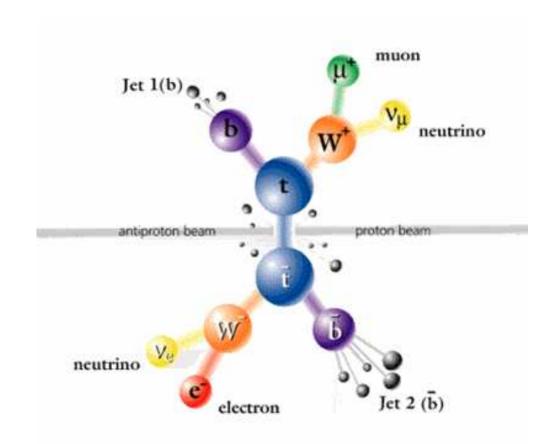
b-tagging efficiency (%)	$P_{J} < 1\%$	$P_{J} < 5\%$	Secondary Vertex tagger
per jet	35 ± 3	47 ± 4	40 ± 3
per $tar{t}$ event	55 ± 4	69 ± 4	60 ± 3

Jet Probability Mistag Rate

- Mistag rate: probability of tagging a light jet as a heavy flavor one
- Determined using inclusive jet data samples
- Parameterized as a 6 dimensional look-up table (mistag matrix);

 $E_T, N_{trk}, \sum E_T^j, \eta, Z_{vtx}, \phi$

- Cross check independent samples: observed (multijet trigger) vs prediction (inclusive jet data)
- Results with 318 pb^{-1}


	$P_{J} < 1\%$	$P_{J} < 5\%$	Secondary Vertex
Overall - tag rate (%)	1.22 ± 0.08	5.30 ± 0.25	0.48 ± 0.04

$tar{t}$ Cross Section Measurement

$$m{\cdot}$$
 Counting experiment: $m{\sigma}_{tar{t}} = rac{N_{obs} - B_{bkg}}{\epsilon_{tar{t}} imes \int L dt}$

Why $t\bar{t}$ Production Cross Section?

- Test non-SM top production mechanism
- Look for new physics in the top samples
- Establish the sample for other top properties measurements

 Goal: demonstrate good understanding of backgrounds in control region and observe excess from top in signal region

Data Selection

Data sample based on Run II data taken untill September 2004

	CEM (Central electrons, $ \eta < 1$)	CMUP (Central muons, $ \eta < 0.6$)	CMX (Extension muons, $0.6 < \eta < 1$)
Lum (pb^{-1})	318.5 ± 18.8	318.5 ± 18.8	305.2 ± 18.0

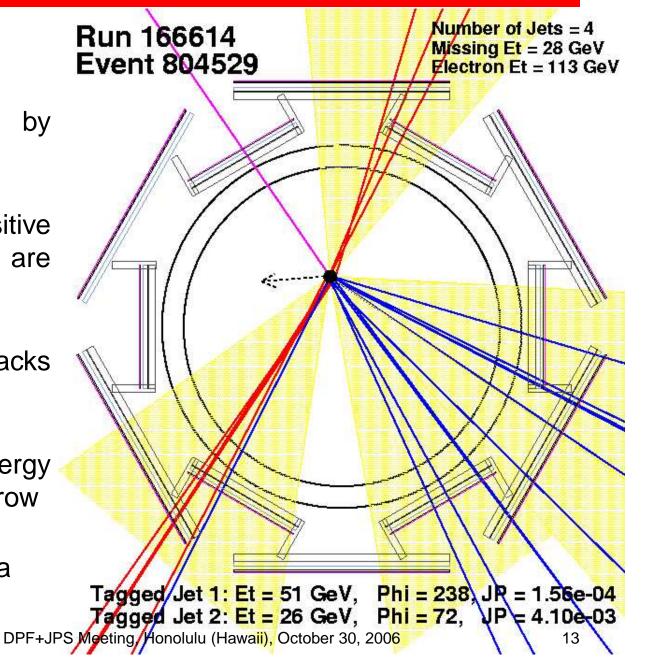
• Event selection:

 \diamondsuit 1 high p_T isolated lepton

Jet Multiplicity	1 jet	2 jets	3 jets	\geq 4 jets			
Before b-tagging							
# Events	29339	4442	300	166			
After b-tagging ($P_J < 1\%$)							
# Events	350	191	52	68			

- high missing transverse energy
- \diamond \geq 3 energetic jets
- \Diamond vetoes (dilepton, cosmics, conversion, z_{vtx})
- $\Diamond \ M_T^W > 20 \ GeV \ {\rm and} \ H_T > 200 \ GeV$
- \diamond \geq 1 tagged jet (jet with positive P_J <1%)

A Top Candidate Event looks like this...

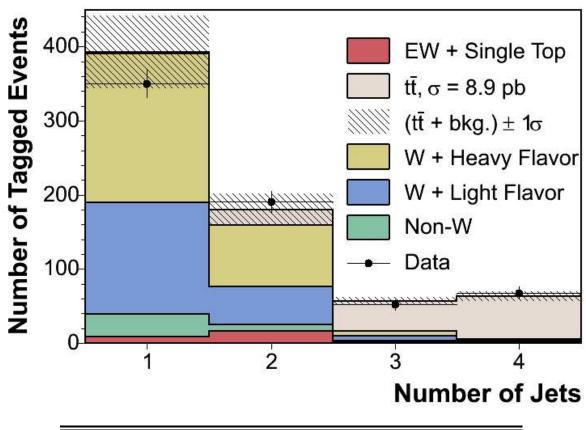

 Jets are represented by yellow hashed cones

 For tagged jets, positive impact parameter tracks are drawn red

 All other (good r-phi) tracks inside jet are drawn blue

 Missing transverse energy direction is the dotted arrow

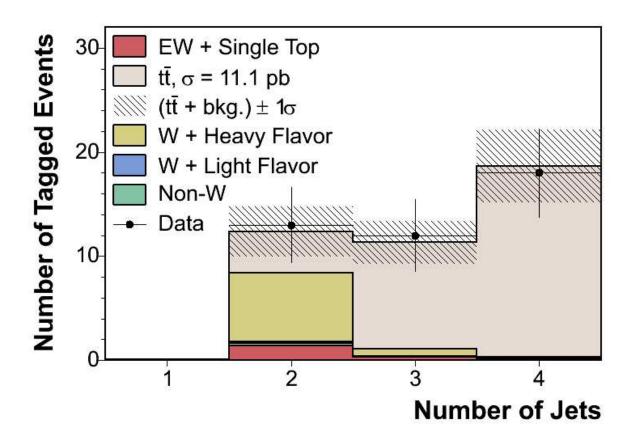
Electron track is magenta


Acceptance and Backgrounds

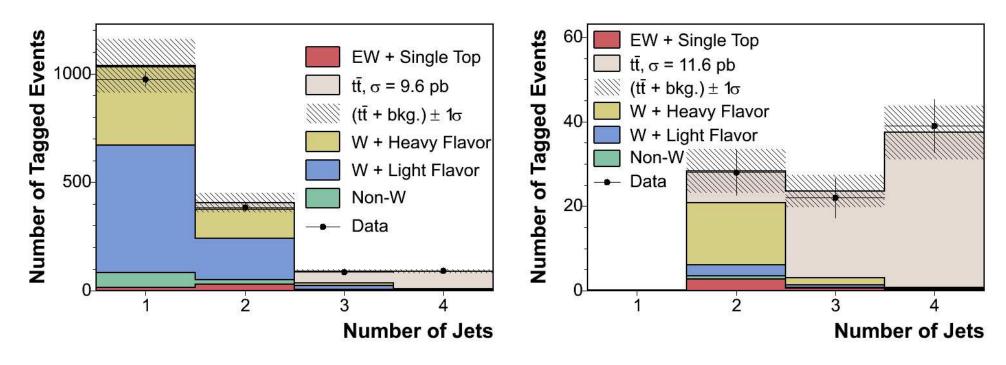
• Jet Probability tagging efficiencies for $t\bar{t}$ events (PYTHIA Monte Carlo sample with $M_t = 178 \text{ GeV}/c^2$)

Quantity	CEM	
Single tag, P_{i}	$_{J}$ <1% (SF = 0.82 \pm 0.07)	
Acc. No Tag	$3.67 \pm 0.02 \pm 0.22$	
Tag Eff.	$54.7 \pm 0.2 \pm 3.6$	
Acc. with Tag	$2.00 \pm 0.01 \pm 0.18$	
$\epsilon_{tar{t}}\int$ L dt	$6.38 \pm 0.04 \pm 0.68$	

- Backgrounds estimate:
 - \diamondsuit Mistags (W+light jets): predicted, from data, by the negative tag rate matrix
 - non-W (QCD production): derived from a control region in data
 - ♦ W+HF: estimated using W+HF MC to
 - ightarrow extract the HF fractions from $rac{W+HF}{W+Jets}$ MC and the b-tag efficiencies
 - → normalized to W+jets pretag data
 - \diamondsuit Diboson, $Z \to \tau \tau$ and single top derived from MC


Results for P_J < 1%

$\overline{\sigma_{tar{t}}}$ (pb)	Single Tag		
$P_J < 1\%$	$8.9 \pm 1.0 \text{ (stat) } ^{+1.1}_{-1.0} \text{(syst)}$		


• Largest syst. uncertainty due to the tagging SF ($\epsilon^{data}/\epsilon^{MC}$), \sim 7%

Cross Check (I): Double tag $P_J < 1\%$

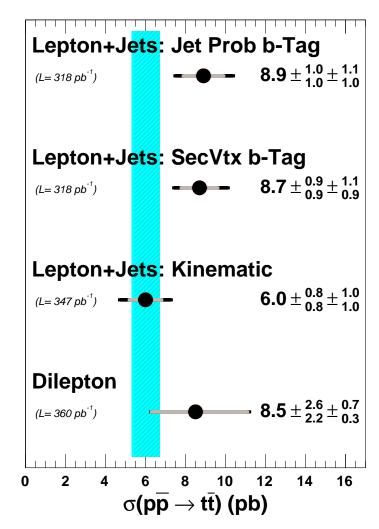
$\sigma_{tar{t}}$ (pb)	Single Tag	Double Tag	
$P_J < 1\%$	8.9 ± 1.0 (stat) $^{+1.1}_{-1.0}$ (syst)	11.1 $^{+2.3}_{-1.9}$ (stat) $^{+2.5}_{-1.9}$ (syst)	

Cross Check (II): $P_J < 5\%$

$\sigma_{tar{t}}$ (pb)	Single Tag	Double Tag
$P_J < 1\%$	8.9 ± 1.0 (stat) $^{+1.1}_{-1.0}$ (syst)	11.1 $^{+2.3}_{-1.9}$ (stat) $^{+2.5}_{-1.9}$ (syst)
$P_{J} < 5\%$	$9.6^{+1.0}_{-0.9}$ (stat) $^{+1.2}_{-1.1}$ (syst)	11.6 $^{+1.7}_{-1.5}$ (stat) $^{+2.4}_{-1.8}$ (syst)

• $Prob(\sigma_{meas} > \sigma_{2t} \mid \sigma_{1t}) = 13.2\% (15.6\%)$

Future Plans

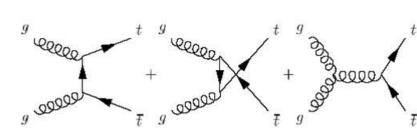

- Repeat the measurement using all data recorded so far
 - \diamond ~ 1.2 fb, almost 4 times data used here
 - statistical error will be reduced
- Will try to reduce the systematic uncertainty
 - Measure the scale factor with different methods

Summary

- We have developed the Jet Probability tagging algorithm for Run II
 - Based on the track impact parameter information
 - Continuous variable to discriminate heavy flavor jets
- Characterized the algorithm (efficiency and mistag rate) using data
 - \diamondsuit 54.5 \pm 3.6% efficiency for $t\bar{t}$ events
 - \diamondsuit 1.22 \pm 0.08% mistag rate
- Measured the $t\bar{t}$ production cross section in the Lepton+Jets sample ($M_{Top}=178~GeV/c^2$)

$$\diamondsuit$$
 $\sigma=8.9\pm1.0(stat)^{+1.1}_{-1.0}(syst)$ pb

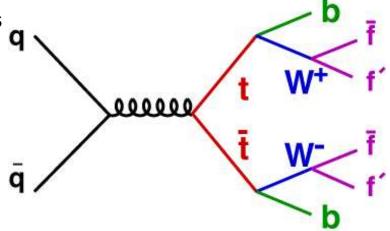
- Value consistent with other measurements (and also with the theoretical value)
 - ♦ Total uncertainty of 17%
- Published in Phys. Rev. D. 74, 072006.



BACK-UP SLIDES

Top Production & Decay Modes

• At Tevatron energies ($\sqrt{s}=1.96\ TeV$) top quark is mainly produced in pairs via strong interaction


- \Diamond $q\bar{q}$ annihilation (85%) or gluon fusion (15%)
- \Diamond $\sigma(p\bar{p} \to t\bar{t} @ M_t = 178~GeV) \approx 6.1~pb \Rightarrow$ one top event every 10 billion inelastic collisions

- Decays via electroweak interaction t o Wb
 - \Diamond BR $(t \to Wb) \approx 1 \Rightarrow$ final state given by the W^{\pm} decays
 - \Diamond BR($W \rightarrow$ leptons) = 1/3, BR($W \rightarrow$ quarks) = 2/3

 $lepton \equiv electron or muon$

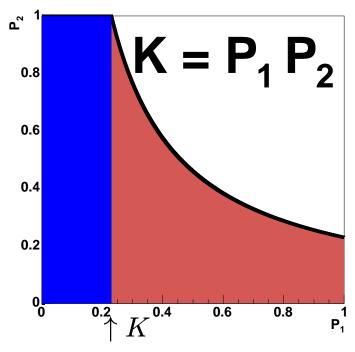
Final State	Dataset	BR	S/B
$l\nu \ l\nu \ bb$	dilepton	~5%	4/1
$l u \; qq \; bb$	lepton+jets	~30%	2/1
$qq \ qq \ bb$	hadronic	~44%	1/4

Deduction of the Jet Probability Formula

• If we have a jet with 2 tracks with positive impact parameter which probabilities are P_1 y P_2 and $K \equiv P_1 \cdot P_2$

$$0 \le P_i \le 1 = 1,2 \Longrightarrow 0 \le K \le 1$$

• The area below and in the left of the curve of constant probability K is the set of combinations, for the 2 tracks, of having a probability less or equal than K. And this area is defined as Jet Probability, P_{jet}


$$\diamond P_{jet} = A + B, \ A = K \cdot 1$$

$$\diamond \mathbf{B} = \int_{x=K}^{x=1} f(x) dx = \int_{x=K}^{x=1} \frac{K}{x} dx = -KLnK$$

$$\Longrightarrow P_{jet} = K(1 - LnK)$$

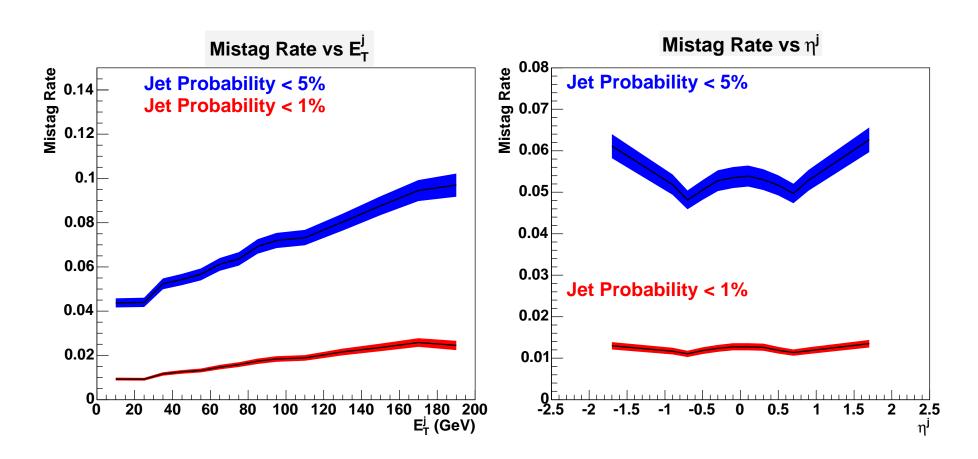
En general, se demustra inductivamente que

$$P_{jet} = \prod_{l=1}^{N_{tr}} P_{tr} \times \sum_{r=0}^{N_{tr}-1} \frac{(-ln \prod_{l=1}^{N_{tr}} P_{tr})^r}{r!} \quad 0.2$$

Jet Probability Efficiency: Method

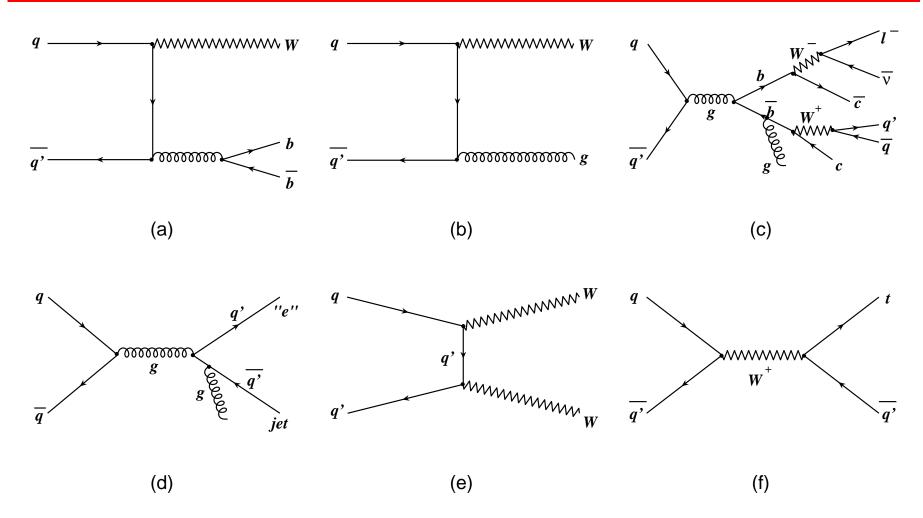
- Measured using an 8 GeV inclusive electron data sample and a generic 2→2 Herwig MonteCarlo sample
- Single tag method: $\epsilon = \frac{N_{ej}^+ N_{ej}^-}{N_{ej}} \cdot \frac{1}{F_B}$
 - Disadvantage: relays on the correct determination of the heavy flavor fraction in the sample
- Double tag method: sample of events with two jets

$$\epsilon = \frac{(N_{a+}^{e+} - N_{a+}^{e-}) - (N_{a-}^{e+} - N_{a-}^{e-})}{N_{a+} - N_{a-}} \cdot \frac{1}{F_B^a}$$


- Calculation of the heavy flavor content in the jet (F_B) has to be corrected for the contribution from charm (determined from MC): $F_B = F_b(1 + \lambda_{c/b})$
 - $\diamondsuit \ F_b \ {
 m from} \ D^0 o K\pi \ {
 m decays:} \ F_b = rac{N_{D^0}}{N_{ej}} \cdot rac{1}{\epsilon_{D^0}}$
 - \diamondsuit F_b from cascade muons: select b-hadrons with 2 semiletonic decays (b \to c \to X) emitting a pair e- μ with opposite charge:

$$F_b = \frac{1}{\epsilon_{\mu}} \frac{N_{ej}^{\mu}(OS) - N_{ej}^{\mu}(SS)}{N_{ej}}$$

Tag Rate Matrix Definition


Bin	E_T (GeV)	Trk. Mult.	$\sum E_T^{jets}$ (GeV)	$ \eta $	$ Z_{ m vtx} $ (cm)	ϕ
1	[0,20)	2	[0,80)	[0,1.0)	[0,10)	$\left[\frac{-\pi}{12},\frac{\pi}{12}\right)$
2	[20,35)	3	[80,140)	≥ 1.0	[10,20)	$[\frac{\pi}{12}, \frac{3\pi}{12})$
3	[35,50)	4,5	[140,220)		[20,40)	$[\frac{3\pi}{12}, \frac{5\pi}{12})$
4	[50,65)	6,7	≥ 220		[40,50)	$\left[\frac{5\pi}{12},\frac{7\pi}{12} ight)$
5	[65,80)	8,9			[50,60)	$\left[\frac{7\pi}{12},\frac{9\pi}{12}\right)$
6	[80,100)	10-13			≥ 60	$\left[rac{9\pi}{12},rac{11\pi}{12} ight)$
7	[100,120)	≥ 14				$\left[\frac{11\pi}{12}, \frac{13\pi}{12}\right)$
8	[120,150)					$\left[\frac{13\pi}{12}, \frac{15\pi}{12}\right)$
9	[150,180)					$\left[\frac{15\pi}{12}, \frac{17\pi}{12}\right)$
10	≥ 180					$\left[\frac{17\pi}{12}, \frac{19\pi}{12}\right)$
11						$\left[\frac{19\pi}{12}, \frac{21\pi}{12}\right)$
12						$\left[\frac{21\pi}{12}, \frac{23\pi}{12}\right)$

Jet Probability Mistag Rate vs E_T and η

 Bands represent the total uncertainty (statistical and systematic added in quadrature).

Backgrounds to $t \bar{t}$ lepton plus jets production

(a) W + heavy flavor jets, (b) W + light jets, (c) Non-W QCD production from heavy flavor decays, (d) Non-W QCD production from fake leptons, (e) diboson production and (f) single top production, t-channel.

Background Summary, Single tag

Jet Multiplicity	1 jet	2 jets	3 jets	≥ 4 jets				
Pretag Data	29339	4442	300	166				
	$P_J <$ 1%							
Electroweak	9.3 ± 1.1	16.6 ± 1.8	2.3 ± 0.3	0.71 ± 0.09				
$Wbar{b}$	83 ± 23	47 ± 13	4.3 ± 1.2	1.1 ± 0.3				
W c ar c	31 ± 9	17.3 ± 5.2	1.6 ± 0.5	0.4 ± 0.1				
Wc	86 ± 21	19.0 ± 4.9	1.0 ± 0.3	0.21 ± 0.06				
Mistag	149 ± 17	51 ± 6	6.1 ± 0.7	2.2 ± 0.3				
$Non ext{-}W$	31 ± 16	8.6 ± 4.6	0.9 ± 0.6	0.5 ± 0.5				
Total Background	389 ± 49	159 ± 22	16.3 ± 2.0	5.1 ± 0.7				
$t \overline{t}$ (8.9 pb)	2.5 ± 0.5	20.6 ± 2.4	40.4 ± 4.5	58.1 ± 6.2				
Data	350	191	52	68				
		$P_{J} < 5\%$						
Electroweak	16.3 ± 1.8	28.8 ± 3.0	4.0 ± 0.4	1.4 ± 0.1				
$Wbar{b}$	111 ± 31	60 ± 17	5.2 ± 1.4	1.1 ± 0.3				
W c ar c	68 ± 20	36 ± 11	3.2 ± 1.0	0.76 ± 0.24				
Wc	184 ± 45	40 ± 10	2.2 ± 0.6	0.5 ± 0.13				
Mistag	585 ± 92	191 ± 30	19.6 ± 3.1	6.1 ± 1.0				
Non-W	69 ± 35	21 ± 11	1.3 ± 0.9	0.8 ± 0.7				
Total Background	1033 ± 125	377 ± 46	35.5 ± 4.2	10.6 ± 1.4				
$t\overline{t}$ (9.6 pb)	3.6 ± 0.6	28.4 ± 3.1	55.1 ± 5.7	78.6 ± 7.8				
Data	975	385	87	93				

Background Summary, Double tag

Jet Multiplicity	2 jets	3 jets	≥ 4 jets
Pretag Data	4442	300	166
$P_J <$ 1%			
MC Derived	1.4 ± 0.3	0.33 ± 0.06	0.10 ± 0.02
$Wbar{b}$	6.1 ± 1.9	0.57 ± 0.19	0.10 ± 0.03
W c ar c	0.38 ± 0.17	0.09 ± 0.04	0.013 ± 0.008
Wc	0.12 ± 0.08	0.02 ± 0.02	0.003 ± 0.003
Mistag	0.21 ± 0.05	0.06 ± 0.01	0.019 ± 0.004
Non-W	0.19 ± 0.12	0.03 ± 0.02	0.05 ± 0.03
Total Background	8.4 ± 2.2	1.1 ± 0.3	0.28 ± 0.06
$tar{t}$ (11.1 pb)	3.9 ± 0.9	10.2 ± 2.0	18.4 ± 3.4
Data	13	12	18
$P_J < 5\%$			
MC Derived	2.83 ± 0.51	0.70 ± 0.12	0.25 ± 0.05
$Wbar{b}$	11.4 ± 3.6	1.1 ± 0.3	0.16 ± 0.05
W c ar c	2.3 ± 0.9	0.38 ± 0.15	0.06 ± 0.03
Wc	0.97 ± 0.37	0.16 ± 0.07	0.03 ± 0.01
Mistag	2.7 ± 0.8	0.65 ± 0.20	0.15 ± 0.05
Non- W	0.63 ± 0.34	0.09 ± 0.05	0.14 ± 0.09
Total Background	20.9 ± 5.0	3.1 ± 0.6	0.80 ± 0.15
$t \overline{t}$ (11.6 pb)	7.5 ± 1.5	20.5 ± 3.7	36.6 ± 6.1
Data	28	22	39