Recent results from Domain WallFermions in Full QCD

Chris Dawson

[RBC-UKQCD Collaboration]

Introduction

⊲ Plan:

- ⊲ Domain Wall Fermions
- ⊲(RBC-UKQCD) 2+1 flavour QCD simulations
- \triangleright Two applications in kaon ^physics:
	- ⊲ Kaon Beta decay
	- ⊲ Kaon B-parameter

Rationale for Domain Wall fermions

- ⊲ Traditional lattice actions break either flavour (Staggered) or chiral (Wilson) symmetry at finite lattices spacing.
- ⊲ Domain Wall Fermions : Exact Flavour symmetry, greatly supressed breaking of Chiral symmetry.
- \triangleright While more expensive, the hope is that the symmetry properties at finite lattice spacing outway the cost (lattice simulations \propto $\propto 1/a^8$
	- \triangleright this is a quantity dependent question.

Domain Wall Fermions

- \triangleright Action in 5th dimension asymmetric w.r.t. chirality.
- \triangleright Define 4d quark fields on the wall
- \triangleright Couple the two walls with ^a mass term

 $m_{\tilde{f}}qq$

 \triangleright For finite L_s chiral symmetry is broken, leading to an additive shift of the mass $m_f \rightarrow m_f + m_{\rm res}$

 $\Rightarrow m_{res} \rightarrow 0$ as $L_s \rightarrow \infty$; The cost in computer time $\propto L_s$ \triangleright Can get small m_{res} (few MeV) for reasonable L_{s} $(O(10))$.

Dynamical DWF on the QCDOC

- ► DWF work well in the quenched and two-flavour theory.
- \triangleright Vital to move to full QCD

The QCDOC computers: RBRC (BNL), UKQCD (Edinburgh), US Machine(BNL).

 \rhd each ~ 10 TFlops (peak).

Joint project UKQCD, RBC using (parts of) all three machines: $\,2{+}1$ flavour $\mathsf{Dynamic}$ al DWF

- \triangleright "light" dynamical masses $(\rightarrow m_s/5)$
- \triangleright (at least) two lattice spacings...
- ⊲ (at least) two volumes

RBC-UKQCD DWF Collaboration (probably ^a little out of date)

RBRC

 Blum, Tom (U Conn)Dawson, Chris Hashimoto, Koichi Izubuchi, Taku (Kanazawa)Ohta, Shigemi (KEK) Sasaki, Shoichi (KEK)Yamazaki, Takeshi

BNL

Jung, ChulwooSholtz, EnnoSoni, Amarjit

Columbia

Aubin, ChristopherChrist, NormanCohen, Saul Li, Sam Lin, Meifeng Lin, HueyWenLoktik, OlegMawhinney, Robert

UKQCD

Allton, C. Antonio, D. J. Bowler, K. C. Boyle, P. A. Clark, M. A. Jüttner, A. Joo, B.

Kennedy, A. D. Kenway, R. D. Noaki, J. Maynard, C. M. Pendleton, B. J. Sachrajda, C. Traveni, A.

Tweedie, R. J. Yamaguchi, A. Zanotti, J.

Historical Document (January 2005)

- \triangleright Have completed 16^3 $^{3}\times32$ run (at a little coarser lattice spacing, and lighter masses), and are in the process of completing 24^3 $\frac{3}{5} \times 64$ run.
- \triangleright Scale setting runs for the small lattice spacing 32^3 $^{\mathfrak{S}}\!\times\!64$ lattices currently underway.

Some results

- \triangleright In the remainder of this talk, I will cover two quantities in Kaon Physics
	- ⊲ Kaon Beta Decay.
	- \triangleright The Kaon B-parameter.

this is an on-going calculation, so all results are <mark>preliminary</mark>

- ⊲ Basic Parameters:
	- \rhd single lattice spacing : $a^{-1} \sim 1.6$ GeV
	- $\triangleright m_{\text{res}} \sim 5 \text{ MeV}$
	- \rhd spatial extent ~ 2 fm and ~ 3 fm for $16^3 \times 32$ and $24^3 \times 32$ respectively.
	- \triangleright three dynamical masses, lightest $\sim m_s/3$

Kaon Beta decay

$$
K^0 \to \pi^- L^+ \nu_l; K^+ \to \pi^0 L^+ \nu_l
$$

where $l \in \{e,\mu\}$.

⊲ \triangleright Itegrating out the Weak force (and heavy quarks): $\Gamma_{K_{l3}} \propto |V_{us}|^2 \, |f_+(0)|^2$

 $\langle \pi(p_f) | \overline{s} \gamma_\mu u | K(p_i) \rangle = (p_i + p_f)_{\mu} f_+(q) + q_{\mu} f_-(q) ; q = p_i - p_f$

where the LHS is evaluated in (3 flavour) QCD.

 \triangleright Used to extract $|V_{us}|$.

 $\rhd f_K/f_\pi$ competitive (more developed calculation on the lattice)

- \triangleright Why is this process so nice?
	- ⊲Insertion of vector current: favourable symmetry properties (no renormalisation in the continuum).
	- \triangleright Don't need much non-perturbative input...

Calculating $f_+(0)$

 \triangleright Ademollo-Gatto theorem: $f_+(0) = 1 - O((m_s - m_u)^2)$

Expand the form factors in Chiral Perturbation Theory:

$$
f_{+}(q^{2}) = 1 + f_{2} + f_{4} + \cdots
$$

with f_i of $O(M^i/f^i)$ in ChiPT

 \triangleright f_2 :

 φ f_2 depends on no new low energy constants. Can be worked out from M_K , M_π and f_π .

 -0.023 using values from experiment.

 \triangleright f_4 :

- \triangleright Calculated in Chiral Perturbation Theory by Bijnens and Talavera. In principle, can be constrained by the experimentally measured slope of $f_0(q^2)$, but needs better experimental resolution.
- \triangleright $-0.016(8)$ from quark model [Leutwyler and Roos, 1984]

The double ratio method

Rather than work with the three-point function of interest directly, the double ratio is used. $\left(\left[\text{Becirevic et al, hep-lat}/0403217\right]$ c.f. $\left[\text{Hashimito et al, 2000}\right]\right)$.

$$
\frac{\langle \pi \left| \overline{s} \gamma_0 u \right| K \rangle \langle K \left| \overline{u} \gamma_0 s \right| \pi \rangle}{\langle \pi \left| \overline{u} \gamma_0 u \right| \pi \rangle \langle K \left| \overline{s} \gamma_0 s \right| K \rangle} = \left[f_0 \left(q_{max}^2 \right) \right]^2 \frac{\left(M_K + M_\pi \right)^2}{4 M_K M_\pi} ; \ q_{max}^2 = (M_K - M_\pi)^2
$$
\n
$$
f_0(q^2) = f_+(q^2) + \frac{q^2}{M_K^2 - M_\pi^2} f_-(q^2)
$$
\nSo by form from the interval q and q is a constant.

Scalar form factor:

$$
f_0(0, M_\pi, M_K) = f_+(0, M_\pi, M_K)
$$

This approac^h has several advantages:

- \triangleright Small statistical error ($< 0.1\%$)
- \triangleright Exactly unity, and exactly $f_+(0)$, on the lattice in $SU(3)$ limit.

The double ratio method...

This just gives $f_0(q^2, M_\pi, M_K)$. Need to

- $\boldsymbol{1}.$ Extrapolate, in q 2 , to $f_0(0) = f_+(0)$ at a fixed (non-physical) mass.
- 2. Extrapolate to ^physical masses.

For $1)$ lattice data with explicit insertion of momenta is needed.

 \triangleright [Becirevic et al, hep-lat/0403217] show how to use various ratios to allow an extraction with ^a small enoug^h error-bar to be useful.

Double Ratio/Momentum Extrapolation ($N_f=2+1$)

- ⊲ From James Zanotti's talk at lattice 2006
- ⊲ Zero momentum injection (small momentum tranfer as lattice ^pion andlattice kaon are close in mass).
- ⊲Several mass differences shown

- \triangleright requires some ansatz to fit to: \triangleright $f_0(q^2) = f_0(0)/(1$ $-\,\lambda^{(pol)}q$ 2 $^{2})$ $\Rightarrow f_0(q^2) = f_0(0)(1 + \lambda^{(1)}q)$ 2 $^{2})$ $\Rightarrow f_0(q^2) = f_0(0)(1 + \lambda^{(2)}q)$ 2 $\gamma + cq$ 4 $^{4})$
- ⊲ Fit to pole form shown.
- \triangleright larger lattice has smaller minimum lattice momenta

Mass extrapolation ($N_f=2+1$)

 \triangleright Unitary points shown.

⊲ $\rhd \Delta f \propto (m_s - m_d)^2$: Ademollo-Gatto

 \triangleright Higher order terms, so looks at:

$$
R = \frac{\Delta F}{m_K^2 - m_\pi^2}
$$

and try

$$
R = a + b \left(m_K^2 + m_\pi^2 \right)
$$

Lattice results

- ⊲ Dramatically smaller error-bar: Larger volume certainly helping
- \triangleright However:
	- ⊲ Chiral extrapolation for all measurements is over ^a large range.
	- ⊲ Ansatz used for momentum extrapolation. (systematics not ye^tstudied)
	- ⊲Lattice spacing, Volume effects?
	- \triangleright
- \triangleright For "fun", using $|V_{us}f_+(0)| = 0.2169(9)$: $|V_{us}| = 0.2241(9)_{exp}(4)_{f+(0)}$

and

$$
1 - |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.0015(7)
$$

versus 0.0008(11) (PDG)

 \triangleright Ecouraging preliminary result. But it is preliminary, and not including all systematics...

Kaon B-parameter

 B_K is the low energy matrix element rele-

Integrate all the particles with masses $\gg \Lambda_{QCD}$:

$$
|\epsilon| = C_{\epsilon} A^2 \lambda^6 \overline{\eta} \left[-\eta_1 S(x_c) + \eta_2 S(x_t) A^2 \lambda^4 (1 - \overline{\rho}) + \eta_3 S(x_c, x_t) \right] \hat{B}_K
$$

Need to calculate this on the lattice:

$$
B_K = \frac{\langle \overline{K}^0 | O_{LL} | K^0 \rangle}{\frac{8}{3} m_K^2 f_K^2}
$$

renormalised in some scheme at some scale.

Operator Mixing and $B_K\;$

In the continuum there is one operator that contributes to B_K It if of the form:

 $O_{\Gamma} = \overline{s}\Gamma_i d \,\,\overline{s}\Gamma_i d$

with the gamma structure:

$$
VV + AA \equiv \gamma_{\mu} \otimes \gamma_{\mu} + \gamma_{\mu} \gamma_5 \otimes \gamma_{\mu} \gamma_5 ;
$$

which is simply the parity conserving part of

$$
(V-A)\otimes (V-A)
$$

- ⊲ Staggered fermions: extra flavours ("tastes" taste mixing problem)
	- \triangleright Many other operators can mix.
	- \triangleright Resolve using 1-loop perturbation theory.
- ⊲ Wilson fermions: Broken Chiral Symmetry.

Operator Mixing and B_K : Broken Chiral Symmetry

 \triangleright If chiral symmetry is broken, four other operators can mix (the four other possible gamma matrix structures)

$$
\langle \overline{K}^0 | O_{VV+AA} | K^0 \rangle_{\text{latt}} \propto \langle \overline{K}^0 | O_{VV+AA} | K^0 \rangle_{\text{ren}} + \sum_{i \ge 2} c_i \langle \overline{K}^0 | O_{MIX,i} | K^0 \rangle_{\text{ren}}
$$

These operators, of course, have ^a different chiral structure.

Mixing is hard to control using perturbation theory; First order chiral perturbationtheory predicts that

 $\langle \overline{K}^0 | O_{VV+AA} | K^0 \rangle \propto M_k^2$

and,

 $\langle \overline{K}^0 | O_{\mathrm{THE\; REST} } | K^0 \rangle \propto \mathrm{constant}$ small enoug^h mass, wrong chirality oper-

Domain Wall Fermions

- ⊲ Domain Wall Fermions "almost" preserve chiral symmetry.
	- \triangleright "almost" no mixing with the wrong chirality operators

- \triangleright wrong chirality matrix elements $O(10)$ times larger than signal at masses of interest.
- \triangleright How much chiral symmetry is enough? Simple model:
	- ⊲One trip through the bulk : supression factor of $O(am_\mathrm{res})$
	- \triangleright Operator of interest is $(V - A)^2$: four left-handed fields. wrong chirality operators : two left-handed, two right-handed

 \longrightarrow $\rightarrow O((am_{\text{res}})^2) \sim 10^{-6}$

Approach

I'm going to show some RBC results in the quenched aproximation (Jun Noaki) from two different lattice spacings..

$$
\triangleright a^{-1} = 2 \text{ GeV } (L_s = 16) \text{ and } 3 \text{ GeV } (L_s = 10)
$$

$$
\triangleright \sim 1.5 \text{fm}^3 \times 3 \text{fm box}
$$

 \triangleright degenerate masses

- \triangleright Put operator with quantum numbers for Kaon at timeslices ⁴ and ²⁸ (2 GeV)
- ⊲Move effective Weak vertex over all timeslices
	- \triangleright Plateau should appear for large separation.

Bare B_K Plateus

 \triangleright Quenched Domain wall fermions results for the ratio used to extract B_K .

Chiral Fits and Extraction of $B_K\;$

Predicted NLO ChiPT:

$$
B_{K} = b_{0} \left(1 - \frac{6}{(4\pi f)^{2}} M_{K}^{2} \ln \left[\frac{M_{K}^{2}}{(4\pi f)^{2}} \right] \right) + b_{1} M_{K}^{2}
$$

DWF(RBC) $a^{-1} = 2 \text{GeV}$ 0.8 \bullet m_{PS}=m_K

DWF(RBC) $a^{-1} = 3 \text{GeV}$

Guenched continuum limit of $B_K\;$

 \triangleright Extrapolate to the continuum as

> $A+Ba$ 2

(would be linear in a without chiral symmetry).

 \triangleright Continuum limit consistent with CP-PACs Iwasaki/DWF calculation using perturbative renormalization

Quenched World Average

 Treat all the errors as statistical: all (continuum extrapolated) combined ^give B_K^{NDR} $K^{DR}(2\text{GeV}) = 0.587(13)$ All a^2 extrapolated, published gives B_K^{NDR} $K^{DR}(2GeV) = 0.582(17)$

both with good χ^2 /dof

Errors not all statistical

$$
B_K^{NDR}(2\text{GeV}) = 0.58(3)
$$

c.f $B_K^{NDR}({\rm 2GeV})=0.58(4)$ [Shoji Hashimoto (ICHEP 2004)]

B_K and the CKM

Recall:

$$
|\epsilon_K| = C_{\epsilon} A^2 \lambda^6 \overline{\eta} \left[-\eta_1 S(x_c) + \eta_2 S(x_t) A^2 \lambda^4 (1 - \overline{\rho}) + \eta_3 S(x_c, x_t) \right] \hat{B}_K
$$

 $\rhd A, \lambda$ already well known $(\sim 5\%$).

- \triangleright This is the CKMfitter group's plot from EPS 2005.
- ⊲From EF3 2005. $B_K(\overline{MS}, 2 \text{ GeV}) = 0.58(3)(6)$

- ⊲The dominant error is from ^a (bad) guess of the quenching error.
- \triangleright Need full QCD calculations, multiple lattice spacings, small masses...

$N_f = 2$ Dynamical Domain Wall Fermions

- \triangleright Repeat the same calculation for the two-flavour case
	- \triangleright Now need chiral PT to perform an extrapolation! (with heavy masses)
	- \triangleright small downward trend with dynamical mass resolved within statistics
	- \rhd big jump down (single lattice spacing)

 \triangleright Looks very dramatic, but...

$N_f = 2$ Dynamical Domain Wall Fermions

- \triangleright need :
	- ⊲ two lattice spacings
	- \triangleright larger volumes
	- ⊲smaller masses
	- ⊲correct number of quarks
- ⇒ "Suggestive" graph with the quenched and dynamical DWFresults on, with the a^2 extrapolation on it.
	- ⊲ (maybe) not ^a very sensible thing to ^plot
- ⇒ Our dynamical result is consistent than the quenched results closest inlattice spacing.
	- ⊲ This is the information used to estimate the systematic error due toquenching.

2+1 flavour Dynamical DWF; Small Volume

- \triangleright Saul Cohens talk at lattice 2006.
- \triangleright Example ^plateau extraction

- \triangleright Chiral perturbation theory fit to the mass dependence (degenerate points)
- \triangleright Doesn't fit too well
	- \triangleright works well as an interpolation
	- ► extrapolation questionable (masses too large)

Scaling Plot

 \triangleright Preliminary number : $B_K(MS, 2GeV) = 0.546(10)(11)$

 \triangleright first error statistics, second from the renormalisation factor (conservative).

 \triangleright Again, useful to look at a scaling plot:

△ Moving towards the Quenched Iwasaki data (which used perturbative renormalisation)

⊲ currently finalizing renormalisation factors, working on "error budget"

Larger Volume Work

 \triangleright 22 configs for the large volume; 75 for small.

Conclusions/Future...

- \triangleright Dynamical Domain Wall Fermion simulations are well under way
	- \triangleright I've shown preliminary result for two quantities
		- ⊲ Kaon Beta Decay

relatively undeveloped quantity on the lattice

need further study of systematics

⊲ Kaon B-parameter

Good agreemen^t in the quenched approximation between different approaches

DWF ideally suited for this calculation because of their goo^d symmetryproperties

Even with ^a single lattice spacing, useful information can be gained.

 \triangleright Larger volumes, smaller lattice spacings on the way...