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Introduction

⊲ Plan:

⊲ Domain Wall Fermions

⊲ (RBC-UKQCD) 2+1 flavour QCD simulations

⊲ Two applications in kaon physics:

⊲ Kaon Beta decay

⊲ Kaon B-parameter

Rationale for Domain Wall fermions

⊲ Traditional lattice actions break either flavour (Staggered) or chiral (Wilson) sym-
metry at finite lattices spacing.

⊲ Domain Wall Fermions : Exact Flavour symmetry, greatly supressed breaking of
Chiral symmetry.

⊲ While more expensive, the hope is that the symmetry properties at finite lattice
spacing outway the cost (lattice simulations ∝ 1/a8)

⊲ this is a quantity dependent question.



Domain Wall Fermions

1 2 Ls/2 Ls... ...

mf

q(L) q(R)

⊲ Action in 5th dimension asymmetric
w.r.t. chirality.

⊲ Define 4d quark fields on the wall

⊲ Couple the two walls with a mass term

mfqq

⊲ For finite Ls chiral symmetry is broken, leading to an additive shift of the mass

mf → mf + mres

⊲ mres → 0 as Ls → ∞ ; The cost in computer time ∝ Ls

⊲ Can get small mres (few MeV) for reasonable Ls (O(10)).



Dynamical DWF on the QCDOC

⊲ DWF work well in the quenched and
two-flavour theory.

⊲ Vital to move to full QCD

The QCDOC computers: RBRC (BNL),
UKQCD (Edinburgh), US Machine
(BNL).

⊲ each ∼ 10 TFlops (peak).

Joint project UKQCD, RBC using (parts of) all three machines: 2+1 flavour Dynamical
DWF

⊲ “light” dynamical masses (→ ms/5)

⊲ (at least) two lattice spacings...

⊲ (at least) two volumes
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Historical Document (January 2005)

mf/ms Ls L ∗ a L ∗ a ∗ mπ Nodes Trajs. Time Proc. Hrs.
(Fm) (days)

163 × 32, 1/a = 1.8 GeV, a = 0.11 Fm:
0.6 12 1.78 3.44 2,048 4,833 8 3.84E+05
0.5 12 1.78 3.14 2,048 5,294 12 6.13E+05
0.4 12 1.78 2.81 2,048 5,919 23 1.11E+06

243 × 64, 1/a = 1.8 GeV, a = 0.11 Fm:
0.4 12 2.67 4.22 4,096 5,919 123 1.21E+07
0.3 12 2.67 3.65 4,096 6,835 270 2.65E+07
0.2 16 2.67 2.98 6,144 8,371 758 1.12E+08

323 × 64, 1/a = 1.8 GeV, a = 0.11 Fm:
0.3 16 3.56 4.87 8,192 6,835 529 1.04E+08

323 × 64, 1/a = 2.4 GeV, a = 0.083 Fm:
0.5 12 2.67 4.71 8,192 7,059 273 5.37E+07

⊲ Have completed 163×32 run (at a little coarser lattice spacing, and lighter masses),
and are in the process of completing 243 × 64 run.

⊲ Scale setting runs for the small lattice spacing 323×64 lattices currently underway.



Some results

⊲ In the remainder of this talk, I will cover two quantities in Kaon Physics

⊲ Kaon Beta Decay.

⊲ The Kaon B-parameter.

this is an on-going calculation, so all results are preliminary

⊲ Basic Parameters:

⊲ single lattice spacing : a−1 ∼ 1.6 GeV

⊲ mres ∼ 5 MeV

⊲ spatial extent ∼ 2 fm and ∼ 3 fm for 163 × 32 and 243 × 32 respectively.

⊲ three dynamical masses, lightest ∼ ms/3



Kaon Beta decay

K0 → π−L+νl; K
+ → π0L+νl

where l ∈ {e, µ}.

⊲ Itegrating out the Weak force (and heavy quarks): ΓKl3
∝ |Vus|

2 |f+(0)|2

〈π(pf )
∣

∣sγµu
∣

∣K(pi)〉 = (pi + pf )µf+(q) + qµf−(q) ; q = pi − pf

where the LHS is evaluated in (3 flavour) QCD.

⊲ Used to extract |Vus|.

⊲ fK/fπ competitive (more developed calculation on the lattice)

⊲ Why is this process so nice?

⊲ Insertion of vector current: favourable symmetry properties (no renormalisation
in the continuum).

⊲ Don’t need much non-perturbative input...



Calculating f+(0)

⊲ Ademollo-Gatto theorem: f+(0) = 1 − O
(

(ms − mu)2
)

Expand the form factors in Chiral Perturbation Theory:

f+(q2) = 1 + f2 + f4 + · · ·

with fi of O(M i/f i) in ChiPT

⊲ f2:

⊲ f2 depends on no new low energy constants. Can be worked out from MK ,
Mπ and fπ.
−0.023 using values from experiment.

⊲ f4:

⊲ Calculated in Chiral Perturbation Theory by Bijnens and Talavera. In principle,
can be constrained by the experimentally measured slope of f0(q

2), but needs
better experimental resolution.

⊲ −0.016(8) from quark model [Leutwyler and Roos, 1984]



The double ratio method

Rather than work with the three-point function of interest directly, the double ratio is
used. ([Becirevic et al, hep-lat/0403217] c.f. [Hashimito et al, 2000]).

〈π |sγ0u|K〉〈K |uγ0s| π〉

〈π |uγ0u| π〉〈K |sγ0s|K〉
=
[

f0

(

q2
max

)]2 (MK + Mπ)2

4MKMπ
; q2

max = (MK − Mπ)2

f0(q
2) = f+(q2) +

q2

M2
K − M2

π
f−(q2)

Scalar form factor:
f0(0, Mπ, MK) = f+(0, Mπ, MK)

This approach has several advantages:

⊲ Small statistical error ( < 0.1% )

⊲ Exactly unity, and exactly f+(0), on the lattice in SU(3) limit.



The double ratio method...

This just gives f0(q
2, Mπ, MK). Need to

1. Extrapolate, in q2, to f0(0) = f+(0) at a fixed (non-physical) mass.

2. Extrapolate to physical masses.

For 1) lattice data with explicit insertion of momenta is needed.

⊲ [Becirevic et al, hep-lat/0403217] show how to use various ratios to allow an
extraction with a small enough error-bar to be useful.



Double Ratio/Momentum Extrapolation (Nf = 2 + 1)

⊲ From James Zanotti’s talk at lattice
2006

⊲ Zero momentum injection (small mo-
mentum tranfer as lattice pion and
lattice kaon are close in mass).

⊲ Several mass differences shown
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⊲ requires some ansatz to fit to:

⊲ f0(q
2) = f0(0)/(1 − λ(pol)q2)

⊲ f0(q
2) = f0(0)(1 + λ(1)q2)

⊲ f0(q
2) = f0(0)(1 + λ(2)q2 + cq4)

⊲ Fit to pole form shown.

⊲ larger lattice has smaller minimum
lattice momenta



Mass extrapolation (Nf = 2 + 1)
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⊲ Unitary points shown.

⊲ ∆f ∝ (ms − md)2 : Ademollo-Gatto

⊲ Higher order terms, so looks at:

R =
∆F

m2
K − m2

π

and try

R = a + b
(

m2
K + m2

π

)



Lattice results

⊲ Dramatically smaller error-bar: Larger
volume certainly helping

⊲ However:

⊲ Chiral extrapolation for all mea-
surements is over a large range.

⊲ Ansatz used for momentum ex-
trapolation. (systematics not yet
studied)

⊲ Lattice spacing, Volume effects?

⊲ Low statistics on larger volume!
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CP-PACS ChiPT
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Leutwyler-Roos

⊲ For “fun”, using |Vusf+(0)| = 0.2169(9):

|Vus| = 0.2241(9)exp(4)f+(0)

and
1 − |Vud|

2 + |Vus|
2 + |Vub|

2 = 0.0015(7)

versus 0.0008(11) (PDG)

⊲ Ecouraging preliminary result. But it is preliminary, and not including all system-
atics...



Kaon B-parameter

BK is the low energy matrix element rele-

vant to CP-violation in K0−K0 mixing.
K0

K0

W

W

u, c, t

u, c, t

Integrate all the particles with masses ≫ ΛQCD:

|ǫ| = CǫA
2λ6η

[

−η1S(xc) + η2S(xt)A
2λ4(1 − ρ) + η3S(xc, xt)

]

B̂K

Need to calculate this on the lattice:

BK =
〈K

0
|OLL|K

0〉
8
3m

2
Kf2

K

OLLK0 K0

renormalised in some scheme at some scale.



Operator Mixing and BK

In the continuum there is one operator that contributes to BK It if of the form:

OΓ = sΓid sΓid

with the gamma structure:

V V + AA ≡ γµ ⊗ γµ + γµγ5 ⊗ γµγ5 ;

which is simply the parity conserving part of

(V − A) ⊗ (V − A)

⊲ Staggered fermions: extra flavours (“tastes” - taste mixing problem )

⊲ Many other operators can mix.

⊲ Resolve using 1-loop perturbation theory.

⊲ Wilson fermions: Broken Chiral Symmetry.



Operator Mixing and BK : Broken Chiral Symmetry

⊲ If chiral symmetry is broken, four other operators can mix (the four other possible
gamma matrix structures)

〈K
0
|OV V +AA|K

0〉latt ∝ 〈K
0
|OV V +AA|K

0〉ren +
∑

i≥2

ci〈K
0
|OMIX,i|K

0〉ren

These operators, of course, have a different chiral structure.

Mixing is hard to control using perturba-
tion theory; First order chiral perturbation
theory predicts that

〈K
0
|OV V +AA|K

0〉 ∝ M2
k

and,

〈K
0
|OTHE REST|K

0〉 ∝ constant

small enough mass, wrong chirality oper-
ators will dominate.
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Domain Wall Fermions

⊲ Domain Wall Fermions ”almost” pre-
serve chiral symmetry.

⊲ ”almost” no mixing with the
wrong chirality operators 1 2 Ls/2 Ls... ...

mf

q(L) q(R)

⊲ wrong chirality matrix elements O(10) times larger than signal at masses of interest.

⊲ How much chiral symmetry is enough?
Simple model:

⊲ One trip through the bulk : supression factor of O(amres)

⊲ Operator of interest is (V − A)2 : four left-handed fields.
wrong chirality operators : two left-handed, two right-handed

→ O((amres)
2) ∼ 10−6



Approach

I’m going to show some RBC results in the quenched aproximation (Jun Noaki) from
two different lattice spacings..

⊲ a−1 = 2 GeV (Ls = 16) and 3 GeV (Ls = 10)

⊲ ∼ 1.5fm3 × 3fm box

⊲ degenerate masses

OLLK0 K0

⊲ Put operator with quantum numbers for Kaon at timeslices 4 and 28 (2 GeV)

⊲ Move effective Weak vertex over all timeslices

⊲ Plateau should appear for large separation.



Bare BK Plateus

a−1 = 2GeV
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⊲ Quenched Domain wall fermions results for the ratio used to extract BK .



Chiral Fits and Extraction of BK

Predicted NLO ChiPT:

BK = b0

(

1 −
6

(4πf )2
M2

K ln

[

M2
K

(4πf )2

])

+ b1M
2
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Quenched continuum limit of BK

⊲ Extrapolate to the continuum as

A + Ba2

(would be linear in a without chiral symmetry).
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⊲ Continuum limit consistent with CP-PACs Iwasaki/DWF calculation using pertur-
bative renormalization



Quenched World Average
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Overlap (De Grand)

Improved Stag (Lee)

Overlap (Berruto) Treat all the errors as statistical: all (con-
tinuum extrapolated) combined give

BNDR
K (2GeV) = 0.587(13)

All a2 extrapolated, published gives

BNDR
K (2GeV) = 0.582(17)

- both with good χ2/dof

Errors not all statistical
BNDR

K (2GeV) = 0.58(3)

c.f BNDR
K (2GeV) = 0.58(4) [Shoji Hashimoto (ICHEP 2004)]



BK and the CKM

Recall:

|ǫK | = CǫA
2λ6η

[

−η1S(xc) + η2S(xt)A
2λ4(1 − ρ) + η3S(xc, xt)

]

B̂K

⊲ A,λ already well known (∼ 5% ).

⊲ This is the CKMfitter group’s plot
from EPS 2005.

⊲ BK(MS, 2 GeV) =0.58(3)(6)
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⊲ The dominant error is from a (bad) guess of the quenching error.

⊲ Need full QCD calculations, multiple lattice spacings, small masses...



Nf = 2 Dynamical Domain Wall Fermions

⊲ Repeat the same calculation for the two-flavour case

⊲ Now need chiral PT to perform an extrapolation! (with heavy masses)

⊲ small downward trend with dynamical mass resolved within statistics

⊲ big jump down (single lattice spacing)

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0

Wilson (WTI)

Staggered

Twisted Mass

DWF (CP-PACS)

DWF (RBC)

Overlap (De Grand)

Improved Stag (Lee)

Overlap (Berruto)

Dynamical Result

⊲ Looks very dramatic, but...



Nf = 2 Dynamical Domain Wall Fermions
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⊲ “Suggestive” graph with the
quenched and dynamical DWF
results on, with the a2 extrapolation
on it.

⊲ (maybe) not a very sensible thing
to plot

⊲ Our dynamical result is consistent
than the quenched results closest in
lattice spacing.

⊲ This is the information used to es-
timate the systematic error due to
quenching.

⊲ need :

⊲ two lattice spacings

⊲ larger volumes

⊲ smaller masses

⊲ correct number of quarks



2+1 flavour Dynamical DWF; Small Volume

⊲ Saul Cohens talk at lattice 2006.

⊲ Example plateau extraction
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⊲ Chiral perturbation theory fit to the
mass dependence (degenerate points)

⊲ Doesn’t fit too well

⊲ works well as an interpolation

⊲ extrapolation questionable
(masses too large)



Scaling Plot

⊲ Preliminary number : BK(MS, 2GeV ) = 0.546(10)(11)

⊲ first error statistics, second from the renormalisation factor (conservative).

⊲ Again, useful to look at a scaling plot:
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⊲ Moving towards the Quenched
Iwasaki data (which used perturba-
tive renormalisation)

⊲ currently finalizing renormalisation factors, working on “error budget”



Larger Volume Work
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⊲ 22 configs for the large volume; 75 for small.



Conclusions/Future...

⊲ Dynamical Domain Wall Fermion simulations are well under way

⊲ I’ve shown preliminary result for two quantities

⊲ Kaon Beta Decay

relatively undeveloped quantity on the lattice

need further study of systematics

⊲ Kaon B-parameter

Good agreement in the quenched approximation between different ap-
proaches

DWF ideally suited for this calculation because of their good symmetry
properties

Even with a single lattice spacing, useful information can be gained.

⊲ Larger volumes, smaller lattice spacings on the way...


