Searches for R-parity Violating Supersymmetry with the DØ Detector

Todd Adams
Florida State University
October 31, 2006
Outline

- R-parity violating supersymmetry
- Gaugino searches in trileptons
- Resonant slepton production
- Neutral, long-lived particles
- Summary
R-Parity Violating Supersymmetry

\[R - \text{parity} : R_P = (-1)^{3B+L+2S} \]

- \(R_p = +1 \) for normal particles
- \(-1\) for supersymmetric particles

\[W = W_{MSSM} + W_{RPV} \]

\[W_{RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \]

\(\Delta L=1 \): Lepton number violation
Gauge symmetry: \(\lambda_{ijk} = -\lambda_{ijk} \rightarrow 9 \lambda \) couplings

Generally assume only one non-zero coupling at a time

\(\Delta L=1 \): Lepton number violation
27 \(\lambda' \) couplings

B = baryon number
L = lepton number
S = spin

I,j,k = 1,2,3 generation indices

L: lepton doublet superfield
E: lepton singlet superfield
Q: quark doublet superfield
D: down-like quark singlet

\(\lambda, \lambda', \lambda'' \) : Yukawa couplings
Outline

• R-parity violating supersymmetry
• Gaugino searches in trileptons (LLE)
• Resonant slepton production
• Neutral, long-lived particles
• Summary
Search for LLE Couplings

Pair Production

$$\bar{q}' \rightarrow W^\pm \tilde{\chi}^\pm_1$$

$$q \rightarrow Z^0 \tilde{\chi}^0_1$$

$\tilde{\chi}^0_1$ is assumed to be LSP

$\lambda > 0.01$ (prompt decay)

mSUGRA:

- $m_0 = 1$ TeV, $m_{1/2} = 280$ GeV
- $\tan\beta = 5$, $\mu > 0$, $A_0 = 0$

RPV Decays

Signal: 4 leptons + 2 neutrinos

Analysis: 3 leptons + missing E_T (MET)
<table>
<thead>
<tr>
<th>Analysis</th>
<th>λ_{121}</th>
<th>λ_{122}</th>
<th>λ_{133}</th>
</tr>
</thead>
<tbody>
<tr>
<td>eee or eeµ</td>
<td>electron p_T > 20 GeV</td>
<td>muon p_T > 12 GeV</td>
<td>electron p_T > 10 GeV</td>
</tr>
<tr>
<td></td>
<td>electron p_T > 20 GeV</td>
<td>muon p_T > 8 GeV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>electron or muon p_T > 10 GeV</td>
<td>electron or muon p_T > 5 GeV</td>
<td>electron or muon p_T > 4 GeV</td>
</tr>
<tr>
<td>missing E_T > 15 GeV</td>
<td>missing E_T > 10 GeV</td>
<td>18 < M_{ee} < 80 GeV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σp_T(lepton) > 50 GeV</td>
<td>MET/√S_T > 1.5 GeV^{1/2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2D cut (M_{µµ}, MET)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ee Sample

μμ Sample w/ Z veto

\[\text{Signal x50} \]

\[\tau \text{ neural network} \]

<table>
<thead>
<tr>
<th>SM Background</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>eee or eeμ ((\lambda_{121}))</td>
<td>(0.9 \pm 0.4 \pm 0.1)</td>
</tr>
<tr>
<td>μμμ or μμe ((\lambda_{122}))</td>
<td>(0.4 \pm 0.1 \pm 0.1)</td>
</tr>
<tr>
<td>eeτ ((\lambda_{133}))</td>
<td>(1.3 \pm 1.7 \pm 0.5)</td>
</tr>
</tbody>
</table>
SUSY Limits

mSUGRA

unconstrained MSSM
(no relation between M_1 and M_2)

Mass limits:

$M(\chi_1^0) > 119$ GeV

$M(\chi_1^\pm) > 234$ GeV

$\chi_1^0 - \chi_1^\pm$ plane
Outline

• R-parity violating supersymmetry
• Gaugino searches in trileptons (LLE)
• Resonant slepton production
• Neutral, long-lived particles
• Summary
Search for Resonant Slepton Production

RPV Production:

\[\lambda'_{211} \]

RPV Decay: \(\chi_1^0 \rightarrow \mu qq \)

\[\tilde{\mu} \rightarrow \tilde{\chi}_1^0 \mu \]
\[\tilde{\mu} \rightarrow \tilde{\chi}_{2,3,4}^0 \mu \]
\[\tilde{\nu}_\mu \rightarrow \tilde{\chi}_1^\pm \mu \]

\[\tilde{\chi}^0 Z \]
\[\tilde{\chi}_1^0 W^\pm \]

Final state: 2 muons and 2 jets

- 3 channels analyzed separately
- Cross-section limits for each channel
- Combined within mSUGRA

can reconstruct \(\chi_1^0 \) mass
• Selection criteria tuned for each slepton/neutralino mass
 • Example:
 • \(m(\tilde{l}) = 260 \text{ GeV} \)
 • \(m(\tilde{\chi}) = 100 \text{ GeV} \)

<table>
<thead>
<tr>
<th>Process</th>
<th>SM Background</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{\mu} \to \tilde{\chi}_1^0 \mu)</td>
<td>11.9 ± 2.1 ± 1.6</td>
<td>14</td>
</tr>
<tr>
<td>(\tilde{\mu} \to \tilde{\chi}_{2,3,4}^0 \mu)</td>
<td>25.4 ± 3.2 ± 5.4</td>
<td>28</td>
</tr>
<tr>
<td>(\tilde{\nu}\mu \to \tilde{\chi}{1,2}^{\pm} \mu)</td>
<td>6.5 ± 1.6 ± 1.6</td>
<td>8</td>
</tr>
</tbody>
</table>
Limits

Limits on $\sigma \times \text{BR}$

$\tilde{\mu} \rightarrow \tilde{\chi}_1^0 \mu$

Limits on λ'_{211}
combined within mSUGRA

Outline

• R-parity violating supersymmetry
• Gaugino searches in trileptons (LLE)
• Resonant slepton production
• Neutral, long-lived particles
• Summary
Search for Neutral, Long-lived Particles

- Search for pair production of two neutral particles
- Look for decay well away from production point
 - two isolated muons $p_T > 10$ GeV
- Sample signal
 - χ_1^0 pair production
 - lifetime depends on λ_{122} and slepton mass
Long Decay Lengths

DCA – distance of closest approach
require: $DCA_{x,y} > 0.01$ and $DCA_{z} > 0.1$ cm

$radius = \sqrt{(X - X_{PV})^2 + (Y - Y_{PV})^2}$
require: $5 < radius < 20$ cm

use $K_S \rightarrow \pi\pi$ for efficiency studies
expected background:
$0.8 \pm 1.1 \pm 1.1$ events
observed 0 events
Limits on NLLP Production

NuTeV
- neutrino experiment at Fermilab
- observed 3 dimuon events in decay region

DØ sets limits on pair production cross-section vs. lifetime

Excludes some interpretations of NuTeV result
Summary

- **DØ** has completed several searches for RPV SUSY
 - LLE: trileptons
 - LLQ: resonant sleptons
 - NLLP: long-lived particles
- No excess is observed in the data
- Significantly improved limits are set
- More data is available and on the way
 - Run II still has a lot of discovery potential
 - 4x statistics already available, 16x possible