

Batavia, IL

De Kalb, IL

Search for leptoquarks with the D0 detector

Sergey Uzunyan on behalf of the D0 collaboration

DPF Conference Honolulu, November 01, 2006

Honolulu, Hawaii

In one step beyond the Standard Model ...

els	SU(3) _C X SU	$(2)_{L} \times U(1)_{Y}$
mod	Quarks	_
GUT	Leptons	Bosons

SuperSymmetric theories

LQ interactions

- invariant under SM
- separately conserve lepton and baryon numbers
- no cross-generation coupling

LEPTOQUARKS

are exotic scalar/vector particles that have color, electric charge and lepton number, predicted by the SM extensions.

SM fe	rmions	Search	
Quarks	Leptons	Leptoquarks ?	
u, d	e, v	LQ1	
s, c	μ,ν	LQ2	
t, b	τ,ν	LQ3	

In this talk

New D0 results (summer 2006) for LQLQ -> vvqq and LQ₃LQ₃->vvbb

DPF Conference, Honolulu

-1- S. Uzunyan -1-

Pair Production

no dependency from unknown LQ - 1 - q coupling Scalar LQ : well known (NLO) cross-section Vector LQ : lager cross-section, model dependent

Decay Signatures

 $\beta ==$ branching LQ->ql[±]

- $\begin{array}{c} q_{N} \\ (\beta) \\ q_{N} \end{array} + \begin{array}{c} LQ_{N} \\ (1-\beta) \\ q_{N} \end{array} \end{array} \begin{array}{c} 2 \text{ leptons} + 2 \text{ jets, no missing energy (MET)} \\ 1 \text{ lepton} \end{array} + 2 \text{ jets} + \text{MET}$

 - 2 jets + missing energy

Previous strongest limits for MET+2 jets final state (CDF collaboration) All LQ generations: 3rd generations : M(LQ)>117 GeV M(LQ) > 148 GeV

Signal selection

Same topology Missing energy and 2 jets, b-tagging for LQ3	Gen. independent sear q jet LQ v mE_T LQ v jet q	ch 3^{rd} gen. LQ b $jet [\mu]$ $lQ_3 v$ mE_T $lQ_3 v$ $jet [\mu]$ b	
Signal, PYTHIA	LQ (80 to 140 GeV)	LQ3 (150 to 220 GeV)	
DATA	Jets + MET trigger (310 pb-1)	Jet + MET(310 pb-1) / MUJET(367pb-1)	
SM Backgrounds MC+ Full Det. Sim. QCD(Instrumental)	W->(μ,e,τ)v+2j (non-nreconstruted lepton), Z->(vv)+2j, WW,WZ, ZZ, top pairs/single production multijet production estimated from data		
LQ Signal selection	Angular correlations between the jet and MET directions	Jet LIfetime Probability (JLIP) b-tag and muon tagging	

The D0 experiment

extended muon and new tracking system Recorded Luminosity (Sep'06) ~ 1.4 fb-1 0.3-0.4 fb-1 Aug '02 -Nov '04 for results in this talk

DPF Conference, Honolulu

-5- S. Uzunyan -5-

LQ in the acoplanar jet topology

Dominant background : Z(vv)+jj and W(lv) +jj

Instrumental background : mean of 2 fits of the MET distribution in 40 to 60 GeV region.

$(Z \rightarrow \nu \nu)$ +2-jets	34.6 ± 4.3
$(W \to \ell \nu) + \text{jets}$	$35.0^{+9.1}_{-8.7}$
$(Z \to \ell \ell) + jets$	$0.3\substack{+0.4 \\ -0.2}$
$tar{t}$	1.9 ± 0.1
WW, WZ, ZZ	1.2 ± 0.2
Total SM background	$72.9 \ {}^{+10.1}_{-9.7} \ {}^{+10.6}_{-12.1}$
Instrumental background	2.3 ± 1.2
Total background	$75.2 \begin{array}{c} +10.1 \\ -9.7 \end{array} \begin{array}{c} +10.7 \\ -12.2 \end{array}$
Data events selected	86
Signal $(m_{LQ} = 140 \text{GeV})$	$51.8 \pm 1.8^{+5.6}_{-4.6}$

After all cuts : No excess of events observed in data over

background expectations.

DPF Conference, Honolulu

-6- S. Uzunyan -6-

LQ in the acoplanar jet topology

M(LQ)<136 GeV excluded at 95% CL -

the most stringent limit for 1st and 2nd generation scalar leptoquarks decaying to quark and neutrino

Published: Phys. Lett. B 640 (2006) 230-237

DPF Conference, Honolulu

-7- S. Uzunyan -7-

3rd generation leptoquarks. LQ LQ -> bvbv

Suppression of the instrumental background and events with isolated leptons

Cut description	Data	Signal(Accept.)
		$M_{LQ}=200 \text{ GeV}$
trigger, $\not\!\!\!E_T > 40 \text{ GeV}, \Delta \phi(\not\!\!\!E_T, \text{jet}) > 0.5$	482635	59.1~(71.1%)
$H_T > 40 \text{ GeV}$	445280	58.6~(70.5%)
leading jet $E_T > 40 \text{ GeV}$	419451	58.3~(70.1%)
second jet $E_T > 20 \text{ GeV}$	167601	51.7~(62.2%)
no bad jets $E_T > 15 \text{ GeV}$	91568	49.7 (59.8%)
the primary vertex $ z < 60$ cm	87873	49.1 (59.1%)
leading jet $ \eta < 1.5$	69892	47.9(57.6%)
jet track confirmation	49494	45.9(55.3%)
no isolated EM objects $p_T > 5 \text{ GeV}$	46569	45.5(54.8%)
no isolated muons	44198	45.0 (54.2%)
muon $p_T^{max} < 200 \text{ GeV}$	44153	44.9 (54.1%)
$\Delta \phi(E_T, \text{jet}) > 0.7$	25348	41.6(50.1%)
acoplanarity $< 165^{\circ}$	24661	40.6(48.8%)
$E_T > 70 \text{ GeV}$	2804	36.5~(43.9%)
$\Delta R \times p_T > 3.5 \text{ GeV}, H_T > 110 \text{ GeV}$		
$\Delta \phi(E_T, \text{jet}) < 3.0$	1241	29.9~(35.9%)

Contribution of multijet backgrounds is small

DPF Conference, Honolulu

-8- S. Uzunyan -8-

3rd generation leptoquarks (Signal Selection)

Events without muons :

Events with muons

2 JLIP (P(light quark) < 2%) tags

(HT>110 GeV, mET> 70 GeV for M(LQ)<200

increased for higher LQ masses

1 muon tag (pT> 4 GeV muon within $\Delta R(\mu, jet) < 0.5$) and/or 1 JLIP tag

Et fraction of tagged jets is large in LQ signal

Xjj == (Et(tag1)+Et(tag2)+pT μ)/(Σ Et(all jets)+pT μ) > 0.8

D0 Run II Preliminary

3rd generation leptoquarks

Process	Pretag	Double JLIP	Muon+ Single JLIP	Total
W(µv)+jj	287±9	0.02±0.01	0.15±0.07	0.17±0.07
W(ev)+jj	320±18	0.02±0.01	0±0	0.02±0.01
W(τν)+jj	698 ± 44	0.15±0.01	0 ± 0	$0.15 {\pm} 0.04$
Z(vv)+jj	1062±21	0.38±0.14	0.03 ± 0.03	0.41 ± 0.14
Тор	60±1	0.71±0.06	0.80±0.09	1.51±0.11
W/Z + bb	28±1	0.66±0.07	0.53±0.11	1.19±0.13
SM expected	2456 ± 53	$1.95 {\pm} 0.17$	1.52 ± 0.16	$3.47{\pm}0.24$
Data (310 pb ¹)	2804	1	0	1
Signal M(LQ)=200 GeV	37±1 (43.9%)	5.8±0.2 (6.9%)	3.1±0.2 (3.7%)	8.8±0.2 (10.6%)

D0 Run II Preliminary

D0 Run II Preliminary

DPF Conference, Honolulu

-10- S. Uzunyan -10-

3rd generation leptoquarks LQ LQ -> bvbv

Analysis note http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm

DPF Conference, Honolulu

-11- S. Uzunyan -11-

Summary

- No evidence of LQ observed in LQLQ -> vvqq and LQ₃LQ₃->vvbb
- new 95% CL limits on LQ mass:
 - 136 GeV and 213 (219) GeV for these channels
- With new data arriving (up to 8 pb-1 in '09) still possibility
 - for discovery and search for new physics

Backup Slides

LQ in acoplanar jets : CDF, 2005, M<117 GeV, 191 pb⁻¹

Fermilab results 3rd generation

	Run I D0 limits (Ge	eV) (RunII 310 pb ¹)	Run I CDF limits (G	eV), (RunII 322 pb ¹)
Scalar LQ3	94 (vvbb)	213(219)	148 (<i>ννbb),</i> 99 (ττ <i>bb)</i>	
Vector (min coupling)	148 (<i>vvbb</i>)		199(<i>vvbb)</i>	251 (ττ <i>bb</i> , B=1)
Vector (Yang-Mills)	216 (<i>vvbb</i>)		250(vvbb)	317 (ττ <i>bb</i> , B=1)

Extrapolation of the D0 LQ3 search for VLQ is in progress

3rd generation leptoquarks (Branching suppression factor)

For the LQ mass >> M(top)

the LQ->bv branching ratio would be $Br(LQ->bv) = Br(LQ->t\tau) = 0.5$ In LQ mass range 180 - 220 GeV the LQ->top+tau channel suppressed but not negligible. Correspondingly decreased Br(LQ->bv) (Table) The green graph was used in the analysis to find LQ mass limit.

BR $(LQ_3 -> bv) = 1 - 0.5 * Fs(bv)$

M(LQ), GeV	Br(bv)**2
185	0.99
200	0.93
220	0.83

DPF Conference, Honolulu

3rd generation leptoquarks - Muon tagging (MUJET triggers)

Total events triggered : ~17000000 (367 pb-1)

Cleaning cuts (down to ~190 events - "noQCD" point):

- track conf. pT> 4 GeV muon in jet with dR(mu,jet) < 0.5
- removal "bad jet" events (not confirmed by d0 correct)
- Et_{leading jet} > 40 GeV, Et{second leading jet} > 20 GeV
- Delta phi(mEt, nearest jet) > 0.7 rad , mEt>75 GeV, mHt > 50 GeV

"NoQCD" point, dominant SM (W-> lv)+jets (~75%)

-- isolation e/mu veto (for $pT(e/\mu) > 5 \text{ GeV}$)

-- **pT**(µ) > 6 GeV (pi/K decays suppression)

-- DR(μ ,jet) x pT(μ) < 3.5 GeV

-- sum of track's pT

in cone 0.5 around the muon Σ pT (trk) > 10 GeV

-- $F\mu$, fraction of calorimeter energy around muon direction in 0.4 cone to 0.6 cone. > 0.7

Systematic uncertainties (3rd generation leptoquarks)

Systematic (%) after all cuts

Error source	Signal (M=200 GeV)	SM background	
Integrated luminosity	6.5		
SM cross section		15	
Trigger efficiency	5		
Jet selection (MHT only)	1		
Jet energy scale	+2.4, -3.2	+11.8, -7.9	
b-tagging efficiency	+13.5, -11.4	+12.0, -10.7	
b->mu branching fraction	1.5%		

Other sources of systematic: muon isolation (cuts on $DR(\mu,jet) \ge pT(\mu)$ and $\Sigma pT(trk)$), PDF for signal, track isolation $DR(track,jet) \ge pT$ were studied: combined contribution less then 5% - not included in the limits calculations.