

Measurements of |V_{cb}| at BaBar

David Lopes Pegna Lawrence Berkeley National Laboratory

on behalf of the BABAR Collaboration

DPF/JPS, University of Hawaii 31 October 2006

Introduction

IV | precision measurement important to test unitarity of CKM matrix

Semileptonic B decays provide the best method to measure $|V_{cb}|$

- Simple theoretical description at parton level
- Rates depend on CKM matrix elements and quark masses

• Poor knowledge of B semileptonic decays into states other than D,D^* dominant background source of exclusive $|V_{cb}|$ (e.g. $D^*\pi l v$ background in $D^*l v$)

◆ Despite quite large BF, 30% of $B \rightarrow X_c^l v$ affected by large uncertainties

• Sum of exclusive modes does not match inclusive $B \rightarrow X_{\ell} v$:

 $\mathcal{B}(B \to X_l v) \neq \mathcal{B}(D v) + \mathcal{B}(D^* v) + \mathcal{B}(D^* v)$

5(10)% of $B \rightarrow X_c l v$ missing for B⁻(B⁰)

• What are we missing? $B \rightarrow D^{(*)} n \pi l v$? other charm final states ?

Decay Distribution for B^0 \rightarrow D^* l^+ v

- ◆ Differential decay rate : $\frac{d\Gamma(B^{0} \to D^{*-}\ell^{+}\nu_{\ell})}{dw \ d\cos\theta_{\ell} \ d\cos\theta_{V} \ d\chi} = \frac{G_{F}^{2}|V_{cb}|^{2}}{48\pi^{3}}F(w,\theta_{\ell},\theta_{V},\chi)G(w)$ Phase space
- The shape of $F(w,\theta_l,\theta_v,\chi)$ can be parameterized with $R_1(w)$, $R_2(w)$ (form factor ratios) and ρ^2 (slope at w=1).
- $w \equiv v_B \cdot v_D * = \frac{M_B^2 + M_D^2 * q^2}{2M_B^2 M_D^2 *}$

 Curvature constrained by analyticity: we use Caprini, Lellouch and Neubert (CLN) parameterization

Caprini, Lellouch, Neubert NPB530 (1998) 153

- θ_{i} χ B D^{*} θ_{v} ψ π_{s}
- Goal is to measure R₁(w=1), R₂(w=1), ρ²

Form factor and V_{cb} measurements

Select
$$D^*\bar{l}^+v_l$$
 events, $p_l^* > 1.2 \text{ GeV}/c$
 $D^*\bar{} \rightarrow D^0\pi\bar{}$, $D^0 \rightarrow K\bar{}\pi^+$, $K\bar{}\pi^+\pi^0$, $K\bar{}\pi^+\pi^+\pi\bar{}\pi^-$

- Estimate combinatoric BBbar background from Δm=m(D⁰π) -m(D⁰) fit
- Reduce D** model dependence in MC by estimating D** background fraction by fitting cos θ_{BY} distribution on data

$$\cos\theta_{BY} = -\frac{M_B^2 + M_Y^2 - 2E_B E_Y}{2p_B p_V}$$

About 69k events, purity ~76.7%

³¹ October 2006

David Lopes Pegna

6

31 October 2006

31 October 2006

Form factor and V_{cb} average

• BaBar has also performed a different form factor measurement on the $B^0 \rightarrow D^{*}l^+\nu$ decay (hep-ex/0602023, accepted for publication)

- Same data sample, statistical overlap between the two analysis is small (different D^{0} decay channels, etc.)
- Unbinned 4-dim maximum likelihood fit vs 1-d projection χ^2 fit

.

$\mathcal{B}(B \rightarrow D^{**}lv)$ Measurement

• Untagged analysis, reconstruct only $D^{**} \rightarrow D^{(*)}\pi^{\pm}$:

 $\mathsf{B}^{0} \to \mathsf{D}^{\star\star^{-}}(\mathsf{D}^{\star^{0}}\pi) l^{+} v \qquad \mathsf{B}^{-} \to \mathsf{D}^{\star\star^{0}}(\mathsf{D}^{+}\pi) l^{-} v$

 $\mathsf{B}^{0} \to \mathsf{D}^{\star\star^{-}}(\mathsf{D}^{0}\pi^{\bar{}}) l^{+} v \qquad \qquad \mathsf{B}^{\bar{}} \to \mathsf{D}^{\star\star^{0}}(\mathsf{D}^{\star^{+}}\pi^{\bar{}}) l^{\bar{}} v$

• Reconstruct B semileptonic decays by identifying a high energy lepton ($p_{l}^{*} > 0.8 \text{ GeV}/c$, $l = e \text{ or } \mu$) and requiring $|cos \theta_{BY}| < 1$

◆ Focus only on narrow states→ broad resonances require full event reconstruction
Y=D**+l system

David Lopes Pegna

31 October 2006

<u>P</u>

$\mathcal{B}(B \rightarrow D^{**}lv)$ Measurement

Global fit results from 208 fb⁻¹ for the 4 modes:

$$\mathcal{B}(B^{-} \to D_{1}^{o}l^{-}v) = (4.48 \pm 0.26(stat.) \pm 0.35(syst.)) \cdot 10^{-3}$$

$$\mathcal{B}(B^{-} \to D_{2}^{*o}l^{-}v) = (3.54 \pm 0.32(stat.) \pm 0.54(syst.)) \cdot 10^{-3}$$

$$\mathcal{B}(B^{o} \to D_{1}^{-}l^{+}v) = (3.64 \pm 0.32(stat.) \pm 0.49(syst.)) \cdot 10^{-3}$$

$$\mathcal{B}(B^{o} \to D_{2}^{*-}l^{+}v) = (2.70 \pm 0.35(stat.) \pm 0.43(syst.)) \cdot 10^{-3}$$

$$\mathcal{B}(D_{2}^{*} \to D\pi) = 0.69 \pm 0.03$$
Mixing Parameter $A = 2.75 \pm 0.44$

BaBar Preliminary

 $\begin{array}{l} \mathcal{B}(B \to D_{1}^{ol} vX) = (3.3 \pm 0.6) \cdot 10^{-3} \\ \mathcal{B}(B \to D_{2}^{\star o} l^{-} vX) = (4.4 \pm 1.6) \cdot 10^{-3} \end{array} \begin{array}{l} \text{Compare e.g. with DO} \ , \text{ using b} \to \\ B = 39\% \text{ and isospin} \qquad \text{Abazov et al, PRL 95} \\ (2005) 171803 \end{array}$

Γ(B→D^(*,)lv)/Γ(B→DXlv) Measurement**

- Measure simultaneously D, D* and D** contributions in a $B^- \rightarrow DXlv$ sample
- $B \rightarrow DXlv$ ($l = e \text{ or } \mu, p_l^* > 0.6 \text{ GeV}/c$) events selected by identifying the *Dl* system on the recoil of a B fully reconstructed in a hadronic

mode \rightarrow low efficiency, high purity

Inclusive analysis, sensitive to all $D^{(*)}\pi$ states ($D^{(*)}$, non resonant...)

G^{(F}→D^(*,)lv)/Γ(B→DXlv) Measurement**

- Global χ^2 fit to : missing mass squared, lepton momentum, additional charged track multiplicity
- → Use exclusively reconstructed $B^{-} \rightarrow Dlv$, $B^{-} \rightarrow D^{*}lv$, $B^{-} \rightarrow D^{**}lv$ data samples to build Probability Density Functions in order to minimize Monte Carlo dependence

$\int \Gamma(B \to D^{(*,**)} lv) / \Gamma(B \to DX lv) Measurement$ BaBar

We measure:

Preliminary 211 fb⁻¹

 $\Gamma(B \to D^{o} lv) / \Gamma(B \to DX lv) = 0.210 \pm 0.017 (stat.) \pm 0.021 (syst.)$

 $\Gamma(B \rightarrow D^{*o} lv) / \Gamma(B \rightarrow DX lv) = 0.611 \pm 0.021 (stat.) \pm 0.027 (syst.)$

 $\Gamma(B \rightarrow D^{**^{O}} lv) / \Gamma(B \rightarrow DX lv) = 0.173 \pm 0.017 (stat.) \pm 0.021 (syst.)$

⁺ Relative branching ratio $\Gamma(B \rightarrow D^{**^{O}} lv)/\Gamma(B \rightarrow DX lv)$ sensitive

to non resonant states $B \rightarrow D^{(*)} n \pi l v$ with $n \ge 1$

	Decay Mode	Branching Fraction
	$B^+ \rightarrow l^+ \nu_l^+ + anything$	10.9 <u>+</u> 0.4 %
	$B^+ \rightarrow \bar{D}^*(2007)^0 \ell^+ \nu_\ell$	(6.5 ± 0.5) %
PDG 06	$B^+ \to \bar{D}^0 \ell^+ \nu_\ell$	(2.15 ± 0.22) %
	$B^+ \rightarrow \bar{D}_1(2420)^0 \ell^+ \nu_\ell$	(0.56 ± 0.16) %
	$B^+ \to \bar{D}_2(2460)^0 \ell^+ \nu_\ell$	< 0.8% @90CL
	$B^+ \rightarrow D^- \pi^+ \ell^+ \nu_\ell$	(0.53 ± 0.10) %
	$B^+ \rightarrow D^{*+} \pi^+ \ell^+ \nu_\ell$	(0.64 ± 0.15) %
	$B^+ \to \bar{D}^{(*)} n \pi \ell^+ \nu_{\ell}$??

The $\mathcal{B}(B \rightarrow D^*lv)$ Puzzle

BaBar measures:

 $\mathcal{B}(B^0 \to D^{*-}l^+v_{_1}) = (4.77 \pm 0.39)\%$

 $\mathcal{B}(B^{-} \rightarrow D^{*0}l^{-}v_{j}) = (6.81 \pm 0.39)\%$

 $\mathcal{B}(B^{-} \rightarrow D^{(\star)} \pi l^{-} v_{,}) = (1.93 \pm 0.30)\%$

Form-Factor and V_{cb} measurement

 $\Gamma(\mathbf{B}^{-} \rightarrow \mathbf{D}^{(*,**)} l \nu) / \Gamma(\mathbf{B}^{-} \rightarrow \mathbf{D} \mathbf{X} l \nu)$ measurement

• Disagreement between charged and neutral $B \rightarrow D^* l v_{j}$

◆ BaBar results compatible with BELLE: Liventsev et al, PRD 72 (2002) 051109 $\mathcal{B}(B^{\circ} \rightarrow D^{*-}lv_{l}) = 4.70 \pm 0.24(\text{stat.})\%$ $\mathcal{B}(B^{-} \rightarrow D^{*0}lv_{l}) = 6.06 \pm 0.25(\text{stat.})\%$ $\mathcal{B}(B^{-} \rightarrow D^{*0}lv_{l}) = 1.81 \pm 0.20 \pm 0.20\%$ $R_{D^{*}} = \mathcal{B}(B^{-} \rightarrow D^{*0}l^{+}v_{l})/\mathcal{B}(B^{0} \rightarrow D^{*-}l^{+}v_{l}) = 1.32 \pm 0.07$ $R_{D^{*}} = \mathcal{B}(B^{-} \rightarrow D^{*0}l^{+}v_{l})/\mathcal{B}(B^{0} \rightarrow D^{*-}l^{+}v_{l}) = 1.32 \pm 0.07$ $R_{D^{*}} = \mathcal{B}(B^{-} \rightarrow D^{*0}l^{+}v_{l})/\mathcal{B}(B^{0} \rightarrow D^{*-}l^{+}v_{l}) = 1.32 \pm 0.07$ $R_{D^{*}} = \mathcal{B}(B^{-} \rightarrow D^{*0}l^{+}v_{l})/\mathcal{B}(B^{0} \rightarrow D^{*-}l^{+}v_{l}) = 1.32 \pm 0.07$ $R_{D^{*}} = \mathcal{B}(B^{-} \rightarrow D^{*0}l^{+}v_{l})/\mathcal{B}(B^{0} \rightarrow D^{*-}l^{+}v_{l}) = 1.32 \pm 0.07$ $R_{D^{*}} = \mathcal{B}(B^{-} \rightarrow D^{*0}l^{+}v_{l})/\mathcal{B}(B^{0} \rightarrow D^{*-}l^{+}v_{l}) = 1.32 \pm 0.07$ $R_{D^{*}} = \mathcal{B}(B^{-} \rightarrow D^{*0}l^{+}v_{l})/\mathcal{B}(B^{0} \rightarrow D^{*-}l^{+}v_{l}) = 1.32 \pm 0.07$ $R_{D^{*}} = \mathcal{B}(B^{-} \rightarrow D^{*0}l^{+}v_{l})/\mathcal{B}(B^{0} \rightarrow D^{*-}l^{+}v_{l}) = 1.32 \pm 0.07$ $R_{D^{*}} = \mathcal{B}(B^{-} \rightarrow D^{*0}l^{+}v_{l})/\mathcal{B}(B^{0} \rightarrow D^{*-}l^{+}v_{l}) = 1.32 \pm 0.07$ $R_{D^{*}} = \mathcal{B}(B^{-} \rightarrow D^{*0}l^{+}v_{l})/\mathcal{B}(B^{0} \rightarrow D^{*-}l^{+}v_{l}) = 1.32 \pm 0.07$ $R_{D^{*}} = \mathcal{B}(B^{-} \rightarrow D^{*0}l^{+}v_{l})/\mathcal{B}(B^{0} \rightarrow D^{*-}l^{+}v_{l}) = 1.32 \pm 0.07$ $R_{D^{*}} = \mathcal{B}(B^{-} \rightarrow D^{*0}l^{+}v_{l})/\mathcal{B}(B^{0} \rightarrow D^{*-}l^{+}v_{l}) = 1.32 \pm 0.07$ $R_{D^{*}} = \mathcal{B}(B^{-} \rightarrow D^{*0}l^{+}v_{l})/\mathcal{B}(B^{0} \rightarrow D^{*-}l^{+}v_{l}) = 1.32 \pm 0.07$ $R_{D^{*}} = 1.32 \pm 0.07$ $R_{D^{*}} = 1.32 \pm 0.0$

≠ τ(B⁺)/τ(B⁰)=1.071 :Puzzle?

David Lopes Pegna

Backup Slides

Form factor and V_{cb} measurements

- Estimate combinatoric BB background from $\Delta m = m(D^0\pi) m(D^0)$ fit
- Reduce D** model dependence in MC by estimating D** background fraction by fitting cos θ_{BY} distribution

on data

$$\cos\theta_{BY} = -\frac{M_B^2 + M_Y^2 - 2E_B E_Y}{2p_B p_Y}$$

➡ 16k events, purity ~85%

B⁰→ D*[−]l⁺v Form factor measurements

Perform maximum likelihood fit to the four-dimensional cross sections
 aBaBar
 one-dimensional projections of fitted distributions:

 $R_{1} = 1.396 \pm 0.060(stat.) \pm 0.035(MC \ stat.) \pm 0.027(syst.)$ $R_{2} = 0.885 \pm 0.040(stat.) \pm 0.022(MC \ stat.) \pm 0.013(syst.)$ $\rho^{2} = 1.145 \pm 0.059(stat.) \pm 0.030(MC \ stat.) \pm 0.035(syst.)$

David Lopes Pegna

$\mathcal{B}(B \rightarrow D^{**}lv)$ Measurement

Systematic error dominated by limited Monte Carlo statistics and background modeling:

Source	$\Delta \mathcal{B}(B \to D^{**}\ell\nu)/\mathcal{B}(B \to D^{**}\ell\nu)[\%]$			
	D_1^0	D_{2}^{*0}	D_1^{\pm}	$D_2^{*\pm}$
Efficiency MC Statistic	5.9	5.4	8.8	8.1
Tracking	1.3	1.4	0.8	0.7
Particle identification	3.3	3.9	4.1	2.2
π^0 -efficiency	0.1	0.1	4.1	0.3
Number of $B\overline{B}$	1.1	1.4	0.5	0.7
$\mathcal{B}(D^{*\pm} \to D^0 \pi^{\pm})$	0.9	0.3	0.1	0.1
$\mathcal{B}(D^{*0} \to D^0 \pi^0)$	0.1	0.2	6.6	0.4
$\mathcal{B}(D^0 \to K\pi)$	2.7	0.6	3.3	1.9
$\mathcal{B}(D^{\pm} \to K\pi\pi)$	0.2	3.9	0.5	1.1
Modeling	3.1	(12.7)	3.0	13.3
Background parameterization	2.2	1.4	2.7	1.8
Total	7.8	15.2	13.5	15.9

Relativistic Breit-Wigner for signal peaks, third-order polynomials for background

German (^{*,**)} *lv*)/Γ(**B**→ **DX***lv*) Measurement

Systematic error dominated by reconstruction efficiency measurement and fit variations:

Systematic uncertainties in the measurement of $\Gamma(B^- \to D^{(*,**)0}\ell^-\bar{\nu}_\ell)/\Gamma(B^- \to DX\ell^-\bar{\nu}_\ell)$.						
	Systematic uncertainty on $\Gamma(B^- \rightarrow D^{(*,**)0}\ell^-\bar{\nu}_\ell)/\Gamma(B^- \rightarrow DX\ell^-\bar{\nu}_\ell)$					
	$B^- \rightarrow D^0 \ell \nu_\ell$	$B^- \rightarrow D^{*0} \ell \nu_{\ell}$	$B^- \rightarrow D^{**0} \ell \nu_{\ell}$			
Tracking efficiency	0.009	0.008	0.004			
Neutral reconstruction	0.001	0.003	0.0009			
Electron ID	0.0008	0.002	0.0007			
Muon ID	0.006	0.02	0.005			
Inclusive Reconstruction						
Cascade decay background	0.01	0.01	0.01			
Conversion and Dalitz decay background	0.001	0.004	0.001			
MC statistics and M_{ES} fit	0.012	0.01	0.011			
Cross-feed corrections	0.001	0.002	0.004			
Exclusive Reconstruction						
Feed-down and feed-up corrections	0.003	0.002	0.002			
MC signal shapes	0.002	0.002	0.007			
D ^{**0} track multiplicity	0.005	0.002	0.005			
M_{ES} fit	0.0007	0.004	0.003			
Cross-feed corrections	0.0003	0.0006	0.0009			
Fit Technique						
Missing mass and lepton momentum PDF	0.007	0.002	0.008			
Total Systematic Error	0.021	0.027	0.021			

Limited systematics from MC D** modeling due to analysis technique, which relies on data

David Lopes Pegna