Vark matter and Mini-CLEAN

James Nikkel Yale University

CLEAN collaboration

Collaborating Institutes:

- *Boston University: E. Kearns, D. Gastler
- *Carleton University: K. Graham
- *LANL: A. Hime, K. Rielage, L. Stonehill, L. Rodriguez
- *NIST, Boulder: K. Coakley
- *University of North Carolina: R. Henning
- *Queen's University: M. Boulay, A. Hallin
- *SNOLAB: F. Duncan, I. Lawson, C. Jillings
- *University of South Dakota: D. Mei
- *University of Texas, Austin: J. Klein, S. Seibert, R. Hegde
- *Yale University: P. McKinsey, J. Nikkel, H. Lippincott,
 - S. Bhandari

Why Neon and Argon?

- Easy to purify; neon with charcoal, argon with a getter
- * Transparent to own scintillation light
- * Inexpensive
- * Good pulse shape discrimination
- Can swap argon for neon to characterize backgrounds and test for WIMP signal without changing detector

CLEAN detectors:

- * Pico-CLEAN: 100 ml test apparatus
 - * measurements of scintillation efficiencies and demonstrate pulse shape discrimination
- * Micro-CLEAN: 3 litre active volume R+D system
 - * measurements of scintillation efficiencies and quantify pulse shape discrimination in argon
 - * soon to switch to neon
- * Mini-CLEAN: 100 litre active volume
 - * will be installed underground as a dark matter detector
- * CLEAN: 100 tonne
 - * p-p solar neutrino and dark matter detector

Pico-CLEAN

Electronic Recoil Calibration:

T 511 keV Compton edge 100 0.93 pe/keV Counts 10 1274 keV Compton edge 500 1500 1000 0 Electronic recoil signal (pe)

Nuclear Recoils:

(neon in pico-CLEAN)

Require: Delayed time of flight

> Minimal asymmetry between PMTs viewing cell

PSD in organic scintillator

Nuclear Recoil Scintillation Efficiency: (neon in pico-CLEAN)

Example Traces:

Time Dependence:

Micro-CLEAN Results

2 x 200 mm PMTs

20 cm diameter inner volume

10 cm tall inner volume

Active volume fully coated with TPB

Electronic Recoil Calibration: (argon in micro-CLEAN)

Nuclear Recoils:

(argon in micro-CLEAN)

Nuclear Recoils:

(argon in micro-CLEAN)

Nuclear Recoil Scintillation Efficiency: (argon in micro-CLEAN)

Example Trace:

(argon in micro-CLEAN)

Time Dependence:

(argon in micro-CLEAN)

280 photoelectron events

(argon in micro-CLEAN)

Solid lines indicate projected level assuming 50% NR acceptance

A CLEAN 32 x

200 mm PMTs

54 cm diameter inner volume

Designed WIMP cross section limit: 10⁴⁵ cm for 1 year BG free

Position reconstruction:

(Mini-CLEAN)

K. Coakley

(Mini-CLEAN)

D-M. Mei & A. Hime

Component	Material	U/Th	Yield (n / yr)	Yield in Target (n / kg /yr)	Yield in ROI (n / kg /yr)	Yield in ROI* (n / kg /yr)
Fiducial Sphere	15 kg Quartz	3 ppb	19.1	0.090	0.029	0.004
	5 kg SS	3 ppb	4.0	0.009	0.003	0.001
PMT Sphere	20 kg SiO ₂	30 ppb	255	0.055	0.018	0.003
	4 kg B ₂ O ₃	30 ppb	2295	0.495	0.162	0.023
	85 kg SS	3 ppb	68.7	0.024	0.010	0.001
Outer Cryostat	125 kg SS	3 ppb	101	0.033	0.013	0.002
Total			2743	0.706	0.235	0.034

- *New pulse shape discrimination results in LAr (preliminary). Discrimination measurements currently limited by ambient neutron backgrounds in aboveground laboratory
- * Preliminary new nuclear recoil scintillation efficiency results for argon
- * Will be filling micro-CLEAN with neon soon
- * Currently commissioning Mini-CLEAN

PMT Testing

Single photo-electron peaks at various temperatures

Gain Curves

Quantum Efficiency

Neon Purification with Charcoal

Adsorption Constants onto Charcoal

