The Detector Performance Study for the Barrel Section of the ATLAS Semiconductor Tracker (SCT) with Cosmic Rays

Yoshikazu Nagai (Univ. of Tsukuba)

For the ATLAS SCT Collaboration

DPF2006 and JPS2006 joint conference Sheraton Waikiki Hotel, Honolulu, Hawaii October 30, 2006

Contents

• Introduction

A Toroidal LHC Apparatus (ATLAS) ID Barrel Combined Cosmic Ray Test

• SCT Analysis

- 1. Track reconstruction
- 2. SCT Module Efficiency
- 3. Track Residual
- 4. Time of Flight Analysis

• Summary

A Toroidal LHC ApparatuS (ATLAS)

ID Barrel Combined Cosmic Ray Test

SCT + TRT Combined Run

- The test was performed during 5 weeks on early summer '06
- Corrected ~0.5M cosmic triggers
- Number of functional channels in SCT Barrel : 99.7 +- 0.03%

For this study, we use ~130K events (~25% of total triggered events)

Barrel Configuration of Cosmic test

ID Barrel Combined Cosmic Ray Test

Goals of combined cosmic ray test

- The detector performance aspects
- Test SCT 4 barrels with operating TRT
- Check detector efficiency, noise level, alignment study, tracking study
- etc ...
- Detector operation & commissioning of system
 - Gain experience with detector operation
 - Test combined detector operation
 - Commission offline software
 - etc ...

First combined test of ID with realistic geometry !! ⁶

SCT Analysis

1.Track reconstruction2.SCT Module Efficiency3.Track Residuals4.Time of Flight Analysis

1. Track Reconstruction

Tracks are reconstructed in ATHENA (ATLAS software) frame work. It includes 2 processes, which are pattern finding and fitting procedure

pattern finding

- Space point formation
- Straight line fitting
- Track candidates formation

fitting procedure

- Re-fitting track candidates with strip hits
- Fitting with χ^2 minimization

Pattern finding procedure

• **Space point** is formed for every intersection of the strips on the front and back side of a module with SCT stereo information

• Track candidates are built by fitting these space points with straight-line

Fitting Procedure

if track candidates are found, then

• Track candidates are re-fitted by hits (single or a few strips)

(Here, tracks are roughly cut)

2. SCT Module Efficiency

track

- For accepted tracks
- remove one layer hits (e.g. remove hits in layer 0)
- refit the track

if refitted track fills : chi^2 / ndof < 10 &</th>remove hitHits in Top sector >= 4 & Hits in Bottom sector >= 4this track is used for efficiency calculation

Efficiency Calculation

- extrapolate the refitted track to the module surface which hits removed
 = predicted hit position
- search hits from the predicted hit position within 1.5mm
 - = observed hit or not

SCT Module Efficiency

SCT Module Efficiency

Average efficiency for each layer / side

Nominal efficiency of layer 0,1,2 are ~ 99% without modules' alignment

(dead channels are included for this calculation)

3. Track Residual

With perfect alignment MC simulation

Mean : ~0.00 mm Sigma : ~0.050 mm are expected.

The real data with no alignment shows good agreement with MC simulation

Summary of Track Residual

The SCT barrel detector is already well aligned without specific alignment.

4. Time of Flight Analysis

<u>Purpose</u>

Select high momentum muons for the efficiency and alignment study

Method

Check dependence between ToF and track residual

- Distance between top and middle scint. is 3.86 m, v=c gives ToF 12.9ns.
- Resolution of scintillator is ~ 0.5ns

ToF between top and middle scintillator

We observe residual increase for larger ToF (lower momentum) probably because of multiple scattering effect.

Summary

- SCT+TRT barrel cosmic test was performed at CERN in early summer '06.
- Functional channels are ~99.7 +- 0.03%
- This study gives ~99% module efficiency, seems SCT modules are healthy (in spec).
- Modules are well aligned without modules alignment.
- ToF analysis gives the possibility to select high momentum muons.

back up

Layer 0 residual for selected track

Layer 1 residual for selected track

Layer 2 residual for selected track

Layer 3 residual for selected track

ToF between top and bottom scintillator

