Gauge theory plasmas from string theory

M. Natsuume (KEK)

Based on many people's works and our works in collaboration w/ Elena Caceres (Colima Univ./U Texas), Kengo Maeda (Kobe City College of Technology) and Takashi Okamura (Kwansei Gakuin)

APS annual meeting 2005

Press release (April 18, 2005):

"instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a *liquid*." "The possibility of a connection between string theory and RHIC collisions is unexpected and exhilarating," (Director of the DOE Office of Science)

First time string theory has been mentioned in the announcement of a major experiment

How is string theory related to quark-gluon plasma?

RHIC complex

RHIC: Relativitistic Heavy Ion Collider (Bookhaven National Nab.)

heavy ion: e.g. 197Au

Goal: realize deconfinement transition (quark-gluon plasma)

http://www.bnl.gov/RHIC/RHIC_complex.htm

A STAR event

Photo courtesy of the STAR Experiment at Brookhaven National Laboratory's Relativistic Heavy Ion Collider

Difficulties

It is not an easy job to confirm QGP formation because ...

Many particles involved, mostly strongly-interacting particles

What we observe: only by-products

 \bullet No real theory to analyze (QCD: still strongly coupled)

genuine signatures of QGP?

- **Low viscosity (elliptic flow)**
- **O** Jet quenching
- \blacksquare / \Downarrow suppression

- A 10-minute course of string theory
- **Small shear viscosity**
- **O** Jet quenching
- J/ψ suppression

Gauge Theories and Black Holes

Open string and closed string

closed string: graviton

Open string: gauge theory

2 degrees of freedom \rightarrow photon's polarizations

If there are N D-branes, open string can connect in various ways

 \rightarrow SU(N)

Open string: bounded on D-brane \rightarrow gauge theory localized on D-brane

 p -dimensional spatial extension \rightarrow Dp-brane

Consider D3-brane to mimic QCD

String theory: more than a gauge theory \rightarrow gravity coupled

D-branes are described simply as a gauge theory?

D-brane and spacetime

 \Rightarrow Spacetime remains flat as long as $g_S N << 1$

SYM is a good description $\overline{}$

Large-N limit

When $\quad g_s$ N >> 1, D-branes strongly curve the spacetime.

BH is a good description

black hole "black brane"

 $g_{\scriptstyle \mathcal{S}} \sim g_{\scriptstyle \mathcal{YM}}^2\;$ so this is just large 'tHooft coupling (strong coupling limit)

More refined version:AdS/CFT dualities

(Finite temperature) AdS/CFT:

We use this duality & its variations Motivated from the D3-brane

FAQs

AdS/CFT only for CFTs?

No. The word "gauge/gravity duality" is more proper

 N=2: N=2*, ... N=1: Klebanov-Strassler, Polchinski-Strassler (N=1*), ...

No Why supersymmetric gauge theories have anything to do with real QCD?

A: universality

Compute properties which are universal among gauge theories

BHs here are just like usual Schwarzschild BHs?

No, at least in 2 respects

(1)BHs here are noncompact objects (often)

Black brane: noncompact horizon \leftrightarrow YM in noncompact space BH: compact horizon \leftrightarrow YM in compact space

(2)impossible to keep thermal equilibrium for usual BHs

- \rightarrow negative specific heat C=dM/dT<0 (Smaller BHs have higher temperature)
- \rightarrow Reason why AdS BHs (positive specific heat)

Gauge theory hydrodynamics and string theory

- **According to RHIC experiments, QGP behaves like a liquid.** AdS/CFT implies that a BH behaves like a liquid as well.
- Then, plasma viscosity must be calculable from BHs.

Viscosity

Fluid bet. 2 plates and move the upper plate

The lower plate experiences a force

$$
\frac{F}{A} = \eta \frac{V}{L}
$$

(shear) viscosity

Universality of shear viscosity

In Gravity, the diffusion occurs by BH absorption

shear viscosity \Leftrightarrow absorption cross section by BH

= horizon area

Das - Gibbons - Mathur (1997)

entropy \Leftrightarrow horizon area

$$
\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}
$$

Each relation is a general result, so this is

A universal result

Kovtun - Son - Starinets (2004)

The claim:

Gauge theory plasmas which have BH duals: universal low value of shear viscosity (over s) at large 't Hooft coupling (for zero chemical potential)

cf.Water under normal conditions:

$$
\frac{\eta}{s} \sim (3 \times 10^3) \times \frac{\hbar}{4\pi k_B}
$$

06/10 APS/JPS2: Hot & dense QCD \overline{a}

 \rightarrow η/s can be compared w/ experiments!

Comparison w/ Experiment

RHIC may suggest
$$
\frac{\eta}{s} \sim 0.1 \times \frac{\hbar}{k_B}
$$
?

Teaney (2003)

Close to the AdS/CFT value:

$$
\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}
$$

cf. pQCD:
$$
\frac{\eta}{s} \sim O(1) \times \frac{\hbar}{k_B}
$$

 $\mathcal{T} \thicksim O(\Lambda_{QCD}) ~: {\sf QCD}$ still strongly-coupled

so the duality may be useful to analyze QGP u:

 \bullet if they really form QGP and if hydrodynamic interpretation is correct $\ddot{}$

Gauge theory at large 't Hooft coupling: universality of shear viscosity

However, all proofs of the universality fail w/ chemical potential

Kovtun - Son - Starinets, 0309213; 0405231 Buchel - Liu, 0311175 Buchel, 0408095

No known result for η/s

What happens to the universality?

Baryon is not easy to realize in AdS/CFT

Simple alternative

Charged BHs instead of neutral BHs

cf. 1st law of BH thermodynamics: $dM = TdS + \Phi dQ$

Not a realistic finite density $\rightarrow U(1)_R$ charge: relates supercharges but the issue is universality

Shear viscosity was computed by 4 groups

Mas, 0601144 Son - Starinets, 0601157 Saremi, 0601159 Maeda - Natsuume - Okamura, 0602010

The result is
$$
\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}
$$
 again!

 \rightarrow universality even at finite baryon # density?

Heavy quark in medium

Heavy quark in medium

Jet quenching

In medium, a jet is suppressed

 \rightarrow energy loss rate of heavy quark

Liu - Rajagopal - Wiedemann, hep-ph/0605178 Herzog et al., 0605158 Casalderrey-Solana - Teaney, hep-ph/0605199 Gubser, 0605182

 $\frac{3}{7}$ J/ ψ suppression

Liu - Rajagopal - Wiedemann, hep-ph/0607062 Chernicoft - Garcia - Guijosa, 0607089

In medium, charmonium formation is suppressed due to the Debye screening c c

cc pair: not at rest relative to plasma

 \rightarrow screening length: velocity-dependent

Chu - Matsui (1989)

Heavy quark in AdS/CFT

 \rightarrow N² possibilities \rightarrow adjoint reps. of SU(N) (e.g. gauge field)

infinitely long string

- \rightarrow N possibilities
- \rightarrow fundamental reps. "quark"

Extension & tension \rightarrow heavy quark

Such a string has been used widely to measure heavy quark potential

Such a string has been used widely to measure heavy quark potential

Such a string has been used widely to measure heavy quark potential

Such a string has been used widely to measure heavy quark potential

Heavy quark in medium

 $\frac{1}{2}$ let quenching

In medium, a jet is suppressed

 \rightarrow energy loss rate of heavy quark

Liu - Rajagopal - Wiedemann, hep-ph/0605178 Herzog et al., 0605158 Casalderrey-Solana - Teaney, hep-ph/0605199 Gubser, 0605182

 $\frac{1}{2}$ J/ ψ suppression

Liu - Rajagopal - Wiedemann, hep-ph/0607062 Chernicoft - Garcia - Guijosa, 0607089

In medium, charmonium formation is suppressed due to the Debye screening c c

cc pair: not at rest relative to plasma

 \rightarrow screening length: velocity-dependent

Chu - Matsui (1989)

06/10 APS/JPS2: Hot & dense QCD

31

Consider in the \overline{qq} rest frame i.e. plasma flow \rightarrow boost BHs

The other gauge theories

Caceres - Natsuume - Okamura, 0607233; 0610nnn

The leading behavior in v seems universal

In general (screening length) $\propto (1 - v^2)^{\Gamma}$ $Γ$ determined by speed of sound: $4Γ = 1 - \frac{3}{4}$ **conformal:** n onconformal: $\Gamma < 1/4$ QCD: $c_S^2 \sim 1/3 - 0.05$ (lattice) at $2\text{Tr} \rightarrow 0.22 < \Gamma < 0.25$? µ.
∫ $\Gamma = 1/4$ 4 $(1-3c_s^2)+\cdots$ $c_S^2 \sim 1/3 - 0.05$ (lattice) at $2T_c \to 0.22 < \Gamma < 0.25$ $\frac{2}{s} \sim 1/3 - 0.05$

Screening length at finite chemical potential: same as the one at zero potential for a given ϵ (at this order)

θ-dependence: similar to N=4 SYM €

Heavy quark in medium

 $\frac{1}{2}$ Jet quenching

In medium, a jet is suppressed

 \rightarrow energy loss rate of heavy quark

Liu - Rajagopal - Wiedemann, hep-ph/0605178 Herzog et al., 0605158 Casalderrey-Solana - Teaney, hep-ph/0605199 Gubser, 0605182

Chu - Matsui (1989)

 $\frac{1}{2}$ J/ ψ suppression

Liu - Rajagopal - Wiedemann, hep-ph/0607062 Chernicoft - Garcia - Guijosa, 0607089

In medium, charmonium formation is suppressed due to the Debye screening

cc pair: not at rest relative to plasma

 \rightarrow screening length: velocity-dependent

c c

Jet quenching in AdS/CFT

universality is lost, no finite large- λ limit (λ : 't Hooft coupling) \leftrightarrow n/s

Estimate w/ α_{YM} = 1/2 does not give an experimentally favored value.

This may suggest that one has to be careful to apply AdS/CFT to QGP.

Jet quenching in AdS/CFT

universality is lost, no finite large- λ limit (λ :'t Hooft coupling) \leftrightarrow η /s

Estimate w/ α_{YM} = 1/2 does not give an experimentally favored value.

This may suggest that one has to be careful to apply AdS/CFT to QGP.

Currently, one can study mostly supersymmetric gauge theories from string theory. So, the connection w/ the real QCD is possible only thru

universality

- **E** Universality seems to hold even at finite chemical potential
- If the universality does not hold, one has to be careful (e.g. jet quenching)
- **AdS/CFT** may be useful to analyze experiments Experiments or the other theoretical tools (such as lattice) may be useful to confirm AdS/CFT

Many loose ends

Open & closed strings interact at boundary.

Bulk field fluctuations act as source of boundary fields

(graviton) (gluons)

GKP-Witten relation (definition of AdS/CFT)

Graviton decay rate (for h_{xy}): calculable using standard QFT formula

$$
\sigma_{QFT} = \frac{1}{2\omega} \sum_{final} \int \frac{d^3 p_1}{(2\pi)^3 2\omega_1} \frac{d^3 p_2}{(2\pi)^3 2\omega_2} (2\pi)^4 \delta^4 (p_f - p_i) |M|^2
$$

$$
= \frac{8\pi G}{\omega} \int d^4 x \, e^{i\omega t} \left\langle \left[T_{xy}^{YM}(t, x), T_{xy}^{YM}(0, 0) \right] \right\rangle
$$

In BH description, this is absorption cross section of graviton.

Indeed (for D3 at zero temp.),

$$
\sigma_{abs} = \frac{\sigma_{abs}}{\omega} = \frac{\sigma_{QFT}}{\omega} \int d^4x \, e^{i\omega t} \left\langle \left[T_{xy}^{YM} (t, x), T_{xy}^{YM} (0, 0) \right] \right\rangle
$$
\nBHT