An AdS/CFT analysis of gauge theory plasma

M. Natsuume (KEK)

Based on hep-th/0602010, 0607233, 06mnnnn
in collaboration w/
Elena Caceres (Colima Univ./U Texas),
Kengo Maeda (Kobe City College of Technology) and
Takashi Okamura (Kwansei Gakuin)

06/10 APS/JPS1: String
AdS/QGP?

QGP experiment is underway at RHIC (Relativistic Heavy Ion Collider). According to RHIC, QGP behaves like a liquid with a very low viscosity (elliptic flow).

Main theoretical challenge: QCD still strongly-coupled and pQCD does not seem to be much helpful.

AdS/CFT comes to the rescue?

One can mainly study supersym. gauge theories in AdS/CFT, however.
Q: Why AdS/CFT has anything to do with real QCD?

A: universality

Compute properties which are universal among gauge theories

One example: (shear viscosity)/(entropy density)

\[
\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}
\]

Kovtun - Son - Starinets (2004)

The relation has been checked for many gravity duals. There are generic proofs as well.

RHIC indeed suggests

\[
\frac{\eta}{s} \sim 0.1 \times \frac{\hbar}{k_B}
\]

Teaney (2003)

06/10 APS/JPS1: String
However, all proofs of the universality fail w/ chemical potential

Kovtun - Son - Starinets, 0309213; 0405231
Buchel - Liu, 0311175
Buchel, 0408095

No known result for η/s

But real experiments are done in finite baryon # density
(RHIC: ion - ion collision such as 197Au)

What happens to the universality?
Not easy to realize baryon # density in AdS/CFT

→ One simple alternative: charged AdS BHs instead of neutral BHs

cf. 1st law of BH thermodynamics: \(dM = TdS + \Phi dQ \)

\((\text{AdS BH}) \times S^5 \rightarrow \text{angular momentum along } S^5 \)

\(\rightarrow U(1)_R \text{ charge} \)

\(S^5 \text{ sym} \rightarrow \text{internal sym} \rightarrow \text{SYM R-sym SO(6)} \)

3 equal charge (SO(6): rank 3) \(\rightarrow \text{RN-AdS BH} \)

Not a realistic finite density, but the issue is universality
Shear viscosity for charged AdS BHs was computed by 4 groups (including ours)

\[\frac{\eta}{s} = \frac{\hbar}{4\pi k_B} \]

The result is again!

- The universality may hold even at nonzero chemical potential
 \[\rightarrow \text{ universality even at finite baryon \# density?} \]

- \(\eta \) does increase but \(s \) has the same scaling (for fixed \(T \))

J. Mas, 0601144
Son and Starinets, 0601157
Saremi, 0601159
Maeda, Natsuume, and Okamura, 0602010
Some details
BH and hydrodynamics

- According to RHIC experiments, QGP behaves like a liquid. AdS/CFT implies that a BH behaves like a liquid as well.
- Then, plasma viscosity must be calculable from BHs.

BH:

The diffusion: consequence of BH absorption

Water pond:

The diffusion: consequence of viscosity
Fluid bet. 2 plates and move the upper plate
The lower plate experiences a force

\[
\frac{F}{A} = \eta \frac{v}{L}
\]

Viscosity modifies EM tensor as

\[
T_{ij} = \rho v_i v_j + P\delta_{ij} - \sigma_{ij}
\]

\[
\sigma_{ij} = \eta (\partial_i v_j + \partial_j v_i - \frac{2}{3} \delta_{ij} \partial_k v_k) + \zeta \delta_{ij} \partial_k v_k
\]

\text{↑ shear viscosity (traceless part) \quad ↑ bulk viscosity (trace part)}

→ Navier-Stokes eq. (for incompressible fluid)
Computation of η

Our problem is to solve perturbation eqs., but I had better explain

How one can see the diffusion for BH

\rightarrow Diffusion is governed by quasinormal modes

How one can extract η in general

Which perturbations one has to study?
Quasinormal modes (Schwarzschild)

e.g. massless scalar perturbation:

\[\nabla^2 \varphi = 0 \rightarrow \left\{ -\partial_t^2 + \partial_{r^*}^2 - V_l(r) \right\} \varphi_l = 0 \]

2 independent solutions in each “asymptotic” region

Sew them together w/ a BC
Possible only for discrete values of \(\omega \)

The perturbation decays exponentially in time

\[\sim e^{-\omega t} \]

06/10 APS/JPS1: String
Computation of η

Our problem is to solve perturbation eqs., but I had better explain

How one can see the diffusion for BH

→ Diffusion is governed by quasinormal modes

How one can extract η in general

Which perturbations one has to study?
Example: R-charge diffusion

Tensor decomposition: \(J^\mu = (\rho, J^i) \)

Conservation eq.: \(0 = \partial_\mu J^\mu = \partial_0 \rho + \partial_i J^i \)

Diffusion const. is defined as ("constitutive eq") \(J_i = -D \partial_i \rho \)

Then,

\[
\partial_0 \rho - D \partial_i^2 \rho = 0 \rightarrow \text{pole at } \omega = -iDK^2
\]

Diffusion const. may be determined from the pole of an appropriate mode.
Hydrodynamic case

Similarly, tensor decomposition of $T_{\mu\nu}$ according to $O(p)$

- scalar \rightarrow sound mode e.g. T_{00}
- vector \rightarrow shear mode T_{0i}
- tensor T_{ij}

Then, $\partial_\mu T^{\mu\nu} = 0$ + (constitutive eq.) gives

vector mode:

$$\omega = -\frac{i\eta}{\varepsilon + p} k^2$$

scalar mode:

$$\omega = v_s k - \frac{i}{2} \frac{1}{\varepsilon + p} (\zeta + \frac{4}{3} \eta) k^2$$

speed of sound \uparrow \uparrow bulk viscosity

Look for h_{0i} perturbations
Outline of computations

Coupled perturbation eqs. (vector modes for RN-AdS$_5$)

Gravitational + electromagnetic

Decoupled eqs.

Kodama - Ishibashi (2003)

2 gauge-inv. modes: Φ_+ and Φ_-

Numerical computations of quasinormal spectrum

more than 3 regular singularities

Locate hydrodynamic poles (poles w/ $\omega \to 0, k \to 0$), check dispersion relations, and find η/s
QN spectrum (Φ−)

hydrodynamic pole

0 : x
0.5: +
0.95: ★
Hydrodynamic pole

Other poles stay at a finite distance from the origin

06/10 APS/JPS1: String
Dispersion relation

\[\text{Large } r_+ \rightarrow \text{small } D \]

large relaxation time

\[\omega_I \propto -k^2 \quad \text{cf.} \quad \omega = -\frac{i\eta}{\varepsilon + \rho} k^2 \]
\[\eta/s \]

charge to mass ratio

\(\eta/s \) in units of \(1/(4\pi) \)

<table>
<thead>
<tr>
<th>(r_/r_+)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c \times 10^{11})</th>
<th>(\gamma_{num.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-0.500051</td>
<td>2.00002</td>
<td>-3.08339</td>
<td>1.000102</td>
</tr>
<tr>
<td>0.05</td>
<td>-0.498175</td>
<td>2.00002</td>
<td>-2.7581</td>
<td>1.00010035</td>
</tr>
<tr>
<td>0.1</td>
<td>-0.49255</td>
<td>2.00002</td>
<td>-2.94714</td>
<td>1.00010002</td>
</tr>
<tr>
<td>0.15</td>
<td>-0.483179</td>
<td>2.00002</td>
<td>-2.51994</td>
<td>1.00009449</td>
</tr>
<tr>
<td>0.2</td>
<td>-0.470089</td>
<td>2.00002</td>
<td>-2.54955</td>
<td>1.0000913</td>
</tr>
<tr>
<td>0.25</td>
<td>-0.453336</td>
<td>2.00002</td>
<td>-2.33166</td>
<td>1.00008669</td>
</tr>
<tr>
<td>0.3</td>
<td>-0.433032</td>
<td>2.00001</td>
<td>-1.86945</td>
<td>1.00007874</td>
</tr>
<tr>
<td>0.35</td>
<td>-0.409367</td>
<td>2.00001</td>
<td>-1.62585</td>
<td>1.0000732</td>
</tr>
<tr>
<td>0.4</td>
<td>-0.382616</td>
<td>2.00001</td>
<td>-1.39078</td>
<td>1.0000651</td>
</tr>
<tr>
<td>0.45</td>
<td>-0.353155</td>
<td>2.00001</td>
<td>-1.17109</td>
<td>1.00006151</td>
</tr>
<tr>
<td>0.5</td>
<td>-0.321446</td>
<td>2.00001</td>
<td>-0.971175</td>
<td>1.00005422</td>
</tr>
<tr>
<td>0.55</td>
<td>-0.288032</td>
<td>2.00001</td>
<td>-0.791317</td>
<td>1.00004974</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.253502</td>
<td>2.00001</td>
<td>-0.628083</td>
<td>1.00004391</td>
</tr>
<tr>
<td>0.65</td>
<td>-0.218464</td>
<td>2.00001</td>
<td>-0.478805</td>
<td>1.00003943</td>
</tr>
<tr>
<td>0.7</td>
<td>-0.183507</td>
<td>2.00001</td>
<td>-0.343142</td>
<td>1.00003295</td>
</tr>
<tr>
<td>0.75</td>
<td>-0.149172</td>
<td>2.00001</td>
<td>-0.223444</td>
<td>1.00002414</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.115927</td>
<td>2.00001</td>
<td>-0.126007</td>
<td>1.00001675</td>
</tr>
<tr>
<td>0.85</td>
<td>-0.0841502</td>
<td>2.00001</td>
<td>-0.0553647</td>
<td>1.00001171</td>
</tr>
<tr>
<td>0.9</td>
<td>-0.0541242</td>
<td>2.00001</td>
<td>-0.0130611</td>
<td>1.00000517</td>
</tr>
<tr>
<td>0.95</td>
<td>-0.0260391</td>
<td>2.00001</td>
<td>0.0549852</td>
<td>0.999999434</td>
</tr>
</tbody>
</table>

\[\omega_I = a \times k^b + c \]

\[b \sim 2 \quad c \sim 0 \]

\[\eta/s = 1/(4\pi) \]

06/10 APS/JPS1: String
Our competitors

All groups essentially have done the same computations and got the same results

- Some uses single R-charged BH, multiple R-charged BH, and RN-AdS₄
- Some use different methods
 - h_{0i} (vector) + QN technique \Rightarrow diffusion: seen directly
 - h_{ij} (tensor) + “Kubo formula” method \Rightarrow indirect

\[
T_{ij} = p\delta_{ij} - \frac{1}{\epsilon + p} \left[\eta(\partial_i T_{0j} + \cdots) \right]
\]

linear response theory for BHs?
Other topics

QGP analysis extremely hard due to the strong coupling

genuine signatures of QGP?

☑ Low viscosity (elliptic flow)
☐ Jet quenching
☐ J/ψ suppression

Liu - Rajagopal - Wiedemann, hep-ph/0605178
Herzog et al., 0605158
Casalderrey-Solana - Teaney, hep-ph/0605199
Gubser, 0605182
Liu - Rajagopal - Wiedemann, hep-ph/0607062
Chernicoff - Garcia - Guijosa, 0607089
Caceres - Natsuume - Okamura, 0607233; 06mnnnn

All of these are explored in AdS/CFT recently.

My talk at “Hot & Dense QCD“ session

06/10 APS/JPS1: String
Summary

Hydrodynamic description of gauge theory plasma using AdS/CFT: very powerful due to universality

Universality seems to hold even at finite chemical potential

AdS/CFT may be useful to analyze experiments
Experiments or the other theoretical tools (such as lattice) may be useful to confirm AdS/CFT

Many loose ends