An AdS/CFT analysis of gauge theory plasma

M. Natsuume (KEK)

Based on hep-th/0602010, 0607233, 06mmnnn in collaboration w/ Elena Caceres (Colima Univ./U Texas), Kengo Maeda (Kobe City College of Technology) and Takashi Okamura (Kwansei Gakuin)

AdS/QGP?

QGP experiment is underway at RHIC (Relativistic Heavy Ion Collider) According to RHIC, QGP behaves like a liquid w/ a very low viscosity (elliptic flow)

Main theoretical challenge: QCD still strongly-coupled and pQCD does not seem to be much helpful.

AdS/CFT comes to the rescue?

One can mainly study supersym. gauge theories in AdS/CFT, however.

Q:Why AdS/CFT has anything to do w/ real QCD?

A: universality

Compute properties which are universal among gauge theories

One example: (shear viscosity)/(entropy density)

$$
\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}
$$
 Kovtun - Son - Starinets (2004)

The relation has been checked for many gravity duals. There are generic proofs as well.

RHIC indeed suggests $\overline{\mathbf{c}}$

$$
\frac{\eta}{s} \sim 0.1 \times \frac{\hbar}{k_B}?
$$

Teaney (2003)

However, all proofs of the universality fail w/ chemical potential

```
Kovtun - Son - Starinets, 0309213; 0405231
         Buchel - Liu, 0311175
              Buchel, 0408095
```
No known result for η/s

But real experiments are done in finite baryon $#$ density (RHIC: ion - ion collision such as $197Au$)

What happens to the universality?

Not easy to realize baryon $#$ density in AdS/CFT

 \rightarrow One simple alternative: charged AdS BHs instead of neutral BHs

cf. 1 st law of BH thermodynamics: $dM = TdS + \Phi dQ$

(AdS BH) ×
$$
S^5 \rightarrow
$$
 angular momentum along S^5
\n \rightarrow U(1)_R charge
\n S^5 sym \rightarrow internal sym \rightarrow SYM R-sym SO(6)

3 equal charge (SO(6): rank 3) \rightarrow RN-AdS BH

Not a realistic finite density, but the issue is universality

Shear viscosity for charged AdS BHs was computed by 4 groups (including ours)

J. Mas, 0601144 Son and Starinets, 0601157 Saremi, 0601159 Maeda, Natsuume, and Okamura, 0602010

The result is
$$
\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}
$$
 again!

The universality may hold even at nonzero chemical potential \rightarrow universality even at finite baryon # density?

 \blacksquare η does increase but s has the same scaling (for fixed T)

Some details

- **According to RHIC experiments, QGP behaves like a liquid.** AdS/CFT implies that a BH behaves like a liquid as well.
- **Then, plasma viscosity must be calculable from BHs.**

Viscosity

Fluid bet. 2 plates and move the upper plate The lower plate experiences a force

$$
\frac{F}{A} = \eta \frac{V}{L}
$$

Viscosity modifies EM tensor as

$$
T_{ij} = \rho v_i v_j + P \delta_{ij} - \sigma_{ij}
$$

$$
\sigma_{ij} = \eta (\partial_i v_j + \partial_j v_i - \frac{2}{3} \delta_{ij} \partial_k v_k) + \varsigma \delta_{ij} \partial_k v_k
$$

I shear viscosity (traceless part)

↑bulk viscosity (trace part)

 \rightarrow Navier-Stokes eq. (for imcompressible fluid)

Computation of η

Our problem is to solve perturbation eqs., but I had better explain

 \blacktriangleright How one can see the diffusion for BH

 \rightarrow Diffusion is governed by quasinormal modes

 H How one can extract η in general

Which perturbations one has to study?

e.g. massless scalar perturbation:

$$
\nabla^2 \varphi = 0 \qquad \rightarrow \quad \left\{ -\partial_t^2 + \partial_{r*}^2 - V_I(r) \right\} \varphi_I = 0
$$

2 independent solutions in each "asymptotic" region

Computation of η

Our problem is to solve perturbation eqs., but I had better explain

 H How one can see the diffusion for BH

 \rightarrow Diffusion is governed by quasinormal modes

 H How one can extract η in general

Which perturbations one has to study?

Determine diffusion const.

Example: R-charge diffusion

Tensor decomposition: $J^{\mu} = (\rho, J^{\prime})$

Conservation eq.: $0 = \partial_{\mu}J^{\mu} = \partial_{0}\rho + \partial_{i}J^{\mu}$

Diffusion const. is defined as ("constitutive eq") $J_i = -D\partial_i \rho$

Then,

$$
\partial_0 \rho - D \partial_j^2 \rho = 0 \rightarrow \text{pole at } \omega = -iDk^2
$$

Diffusion const. may be determined from the pole of an appropriate mode.

Hydrodynamic case

Similarly, tensor decomposition of $\, \mathcal{T}_{\mu\nu} \,$ according to $\mathsf{O}(\mathsf{p}) \,$

scalar \rightarrow sound mode e.g. T_{00} vector \rightarrow shear mode tensor € T_{0i} \mathcal{T}_{ij}

Then, $\,\partial_{\mu} \mathcal{T}^{\mu\nu} = 0\,$ + (constitutive eq.) gives vector mode: € $\omega = -\frac{i\eta}{s+\rho}k$ $\mathcal{E} + \mathcal{P}$ $\overline{\mathsf{k}^2}$

 scalar mode: speed of sound ↑ ↑ bulk viscosity € $\omega =v_S k - \frac{i}{2}$ 2 1 $\varepsilon + p$ $(\varsigma +$ 4 3 η) k^2

Look for h_{0i} perturbations

Outline of computations

QN spectrum (Φ-)

Hydrodynamic pole

Dispersion relation

η/s

 $\omega_1 = a \times k^b + c$

charge to mass ratio η/s in units of $I/(4\pi)$

All groups essentially have done the same computations and got the same results Mas; Son - Starinets; Saremi

- Some uses single R-charged BH, multiple R-charged BH, and RN-AdS₄
- Some use different methods

 h_{0i} (vector) + QN technique \Rightarrow diffusion: seen directly

 h_{ij} (tensor) + "Kubo formula" method \Rightarrow indirect

1pt f n

\n
$$
T_{ij} = \rho \delta_{ij} - \frac{1}{\varepsilon + \rho} \Big[\eta(\partial_i T_{0j} + \cdots \Big]
$$
\n1
linear res

$$
2pt \text{fn} \qquad \eta \sim \int d^4x \, e^{i\omega t} \langle \left[T_{xy}(t,x), T_{xy}(0,0) \right] \rangle \; \cdot
$$

ponse theory for BHs? QGP analysis extremely hard due to the strong coupling

genuine signatures of QGP?

Low viscosity (elliptic flow)

 \Box Jet quenching

 \Box J/ψ suppression

Liu - Rajagopal - Wiedemann, hep-ph/0607062 Liu - Rajagopal - Wiedemann, hep-ph/0605178 Herzog et al., 0605158 Casalderrey-Solana - Teaney, hep-ph/0605199 Gubser, 0605182

Chernicoft - Garcia - Guijosa, 0607089 Caceres - Natsuume - Okamura, 0607233; 06mmnnn

All of these are explored in AdS/CFT recently.

 \Rightarrow My talk at "Hot & Dense QCD " session

- Hydrodynamic description of gauge theory plasma using AdS/CFT: very powerful due to universality
- Universality seems to hold even at finite chemical potential
- AdS/CFT may be useful to analyze experiments Experiments or the other theoretical tools (such as lattice) may be useful to confirm AdS/CFT

Many loose ends